A metric discrepancy result with given speed
详细信息    查看全文
文摘
It is known that the discrepancy \({D_N\{kx\}}\) of the sequence \({\{kx\}}\) satisfies \({ND_N\{kx\} = O((\log N){(\log \log N)}^{1+\varepsilon})}\) a.e. for all \({\varepsilon > 0}\), but not for \({\varepsilon=0}\). For \({n_k=\theta^k}\), \({\theta > 1}\) we have \({ND_N\{n_kx\} \leqq (\Sigma_\theta +\varepsilon){(2N\log \log N)}^{1/2}}\) a.e. for some \({0 < \Sigma_\theta < \infty}\) and \({N\geqq N_0}\) if \({\varepsilon > 0}\), but not for \({\varepsilon < 0}\). In this paper we prove, extending results of Aistleitner–Larcher [6], that for any sufficiently smooth intermediate speed \({\Psi(N)}\) between \({(\log N){(\log \log N)}^{1+\varepsilon}}\) and \({{(N\log \log N)}^{1/2}}\) and for any \({\Sigma > 0}\), there exists a sequence \({\{n_k\}}\) of positive integers such that \({ND_N\{n_kx\} \leqq (\Sigma+\varepsilon)\Psi(N)}\) eventually holds a.e. for \({\varepsilon > 0}\), but not for \({\varepsilon < 0}\). We also consider a similar problem on the growth of trigonometric sums.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700