Biological potential of nanomaterials strongly depends on the suspension media: experimental data on the effects of fullerene C60 on membranes
详细信息    查看全文
  • 作者:Barbara Drašler ; Damjana Drobne ; Nataša Poklar Ulrih ; Ajda Ota
  • 关键词:Fullerene C60 ; Liposomes ; Human erythrocytes ; Experimental medium
  • 刊名:Protoplasma
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:253
  • 期:1
  • 页码:175-184
  • 全文大小:818 KB
  • 参考文献:Andrievsky GV, Kosevich MV, Vovk OM, Shelkovsky VS, Vashchenko LA (1995) On the Production of an Aqueous Colloidal Solution of Fullerenes Journal of the Chemical Society-Chemical Communications:1281-1282
    Asharani PV, Sethu S, Vadukumpully S, Zhong SP, Lim CT, Hande MP, Valiyaveettil S (2010) Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles. Adv Funct Mater 20:1233-–1242. doi:10.​1002/​adfm.​200901846 CrossRef
    Bakry R, Vallant RM, Najam-Ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomed 2:639–649
    Banaszak MMH (2009) Nanotoxicology: a personal perspective. Wiley Interdiscip Rev: Nanomedicine and Nanobiotechnology 1:353–359
    Boggs JM (1987) Lipid intermolecular hydrogen-bonding—influence on structural organization and membrane-function. Biochim Biophys Acta 906:353–404. doi:10.​1016/​0304-4157(87)90017-7 PubMed CrossRef
    Bouropoulos N et al (2012) Probing the perturbation of lecithin bilayers by unmodified C-60 fullerenes using experimental methods and computational simulations. J Phys Chem C 116:3867–3874. doi:10.​1021/​Jp206221a CrossRef
    Bozdaganyan ME, Orekhov PS, Shaytan AK, Shaitan KV (2014) Comparative Computational Study of Interaction of C-60-Fullerene and Tris-Malonyl-C-60-Fullerene Isomers with Lipid Bilayer: Relation to Their Antioxidant Effect Plos One 9 doi 10.​1371/​journal.​pone.​0102487
    Crane M, Handy RD, Garrod J, Owen R (2008) Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17:421–437. doi:10.​1007/​s10646-008-0215-z PubMed CrossRef
    Dellinger A, Zhou ZG, Connor J, Madhankumar AB, Pamujula S, Sayes CM, Kepley CL (2013) Application of fullerenes in nanomedicine: an update. Nanomedicine-UK 8:1191–1208. doi:10.​2217/​Nnm.​13.​99 CrossRef
    DeVane R, Jusufi A, Shinoda W, Chiu CC, Nielsen SO, Moore PB, Klein ML (2010) Parameterization and application of a coarse grained force field for benzene/fullerene interactions with lipids. J Phys Chem B 114:16364–16372. doi:10.​1021/​Jp1070264 PubMed CrossRef
    Drasler B et al (2014) Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes. Int J Nanomed 9:1559–1581. doi:10.​2147/​Ijn.​S57671 CrossRef
    Fortner JD et al (2005) C-60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39:4307–4316PubMed CrossRef
    Frascione D et al (2012) Ultrasmall superparamagnetic iron oxide (USPIO)-based liposomes as magnetic resonance imaging probes. Int J Nanomed 7:2349–2359. doi:10.​2147/​Ijn.​S30617
    Gmajner D, Grabnar PA, Znidaric MT, Strus J, Sentjurc M, Ulrih NP (2011) Structural characterization of liposomes made of diether archaeal lipids and dipalmitoyl-L-alpha-phosphatidylcholine. Biophys Chem 158:150–156. doi:10.​1016/​j.​bpc.​2011.​06.​014 PubMed CrossRef
    Grebowski J, Krokosz A, Puchala M (2013) Fullerenol C(6)(0)(OH)(3)(6) could associate to band 3 protein of human erythrocyte membranes. Biochim Biophys Acta 1828:2007–2014. doi:10.​1016/​j.​bbamem.​2013.​05.​009 PubMed CrossRef
    Hagerstrand H, Danieluk M, Bobrowska-Hagerstrand M, Iglic A, Wrobel A, Isomaa B, Nikinmaa M (2000) Influence of band 3 protein absence and skeletal structures on amphiphile- and Ca2+-induced shape alterations in erythrocytes: a study with lamprey (Lampetra fluviatilis), trout (Oncorhynchus mykiss) and human erythrocytes. BBA-Biomembr 1466:125–138. doi:10.​1016/​S0005-2736(00)00184-X CrossRef
    Han YC, Wang XY, Dai HL, Li SP (2012) Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions. Acs Appl Mater Inter 4:4616–4622. doi:10.​1021/​Am300992x CrossRef
    Huang WD, Qian KX, Tan HQ, Li WZ (1996) The effect of buckyball C-60 irradiation on the fluidity of erythrocyte membranes. Acta Bioch Bioph Sin 28:321–324
    Iglic A (1997) A possible mechanism determining the stability of spiculated red blood cells. J Biomech 30:35–40. doi:10.​1016/​S0021-9290(96)00100-5 PubMed CrossRef
    Ikeda A, Kiguchi K, Shigematsu T, Nobusawa K, Kikuchi J, Akiyama M (2011) Location of [60]fullerene incorporation in lipid membranes. Chem Commun 47:12095–12097. doi:10.​1039/​C1cc14650e CrossRef
    Ikeda A et al (2012) Advantages and potential of lipid-membrane-incorporating fullerenes prepared by the fullerene-exchange. Method Chem-Asian J 7:605–613. doi:10.​1002/​asia.​201100792 PubMed CrossRef
    Ikeda A, Kiguchi K, Hida T, Yasuhara K, Nobusawa K, Akiyama M, Shinoda W (2014) [70]Fullerenes Assist the Formation of Phospholipid Bice Iles at Low Lipid Concentrations Langmuir 30:12315–12320. doi:10.​1021/​La503732q
    Ikeda A et al (2005) Efficient photocleavage of DNA utilising water-soluble lipid membrane-incorporated [60]fullerenes prepared using a [60]fullerene exchange method. Org Biomol Chem 3:2907–2909. doi:10.​1039/​B507954c PubMed CrossRef
    Kato S, Kikuchi R, Aoshima H, Saitoh Y, Miwa N (2010) Defensive effects of fullerene-C60/liposome complex against UVA-induced intracellular reactive oxygen species generation and cell death in human skin keratinocytes HaCaT, associated with intracellular uptake and extracellular excretion of fullerene-C60. J Photoch Photobio B 98:144–151. doi:10.​1016/​j.​jphotobiol.​2009.​11.​015 CrossRef
    Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) C-60—Buckminsterfullerene. Nature 318:162–163. doi:10.​1038/​318162a0 CrossRef
    Leonenko ZV, Finot E, Ma H, Dahms TES, Cramb DT (2004) Investigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy. Biophys J 86:3783–3793. doi:10.​1529/​biophysj.​103.​036681 PubMed PubMedCentral CrossRef
    Leroueil PR, Hong SY, Mecke A, Baker JR, Orr BG, Holl MMB (2007) Nanoparticle interaction with biological membranes: does nanotechnology present a janus face? Accounts Chem Res 40:335–342CrossRef
    Li SQ, Zhu RR, Zhu H, Xue M, Sun XY, Yao SD, Wang SL (2008) Nanotoxicity of TiO(2) nanoparticles to erythrocyte in vitro. Food Chem Toxicol 46:3626–3631. doi:10.​1016/​j.​fct.​2008.​09.​012 PubMed CrossRef
    Lichtenberg D, Menashe M, Donaldson S, Biltonen RL (1984) Thermodynamic characterization of the pretransition of unilamellar dipalmitoyl-phosphatidylcholine vesicles. Lipids 19:395–400. doi:10.​1007/​Bf02537400 PubMed CrossRef
    Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40:4360–4366PubMed CrossRef
    Mesaric T et al (2013) Effects of surface curvature and surface characteristics of carbon-based nanomaterials on the adsorption and activity of acetylcholinesterase. Carbon 62:222–232. doi:10.​1016/​j.​carbon.​2013.​05.​060 CrossRef
    Monticelli L, Salonen E, Ke PC, Vattulainen I (2009) Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective. Soft Matter 5:4433–4445. doi:10.​1039/​B912310e CrossRef
    Peetla C, Stine A, Labhasetwar V (2009) Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol Pharm 6:1264–1276PubMed PubMedCentral CrossRef
    Poklar N, Fritz J, Macek P, Vesnaver G, Chalikian TV (1999) Interaction of the pore-forming protein equinatoxin II with model lipid membranes: A calorimetric and spectroscopic study. Biochemistry-Us 38:14999–15008. doi:10.​1021/​Bi9916022 CrossRef
    Prato M (1997) [60] Fullerene chemistry for materials science applications. J Mater Chem 7:1097–1109. doi:10.​1039/​A700080d CrossRef
    Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC (2007) Translocation of C-60 and its derivatives across a lipid bilayer. Nano Lett 7:614–619PubMed CrossRef
    Riske KA, Barroso RP, Vequi-Suplicy CC, Germano R, Henriques VB, Lamy MT (2009) Lipid bilayer pre-transition as the beginning of the melting process. BBA-Biomembr 1788:954–963. doi:10.​1016/​j.​bbamem.​2009.​01.​007 CrossRef
    Rossi G, Barnoud J, Monticelli L (2013) Partitioning and solubility of C-60 fullerene in lipid membranes Phys Scripta 87 doi 10.​1088/​0031-8949/​87/​05/​058503
    Rudenko SV (2010) Erythrocyte morphological states, phases, transitions and trajectories. BBA-Biomembr 1798:1767–1778. doi:10.​1016/​j.​bbamem.​2010.​05.​010 CrossRef
    Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of C-60 in a Variety of Solvents. J Phys Chem-Us 97:3379–3383CrossRef
    Salonen E, Lin S, Reid ML, Allegood M, Wang X, Rao AM, Vattulainen I, Ke PC (2008) Real-time translocation of fullerene reveals cell contraction. Small 4:1986–1992. doi:10.​1002/​smll.​200701279 PubMed CrossRef
    Schulz M, Olubummo A, Binder WH (2012) Beyond the lipid-bilayer: interaction of polymers and nanoparticles with membranes. Soft Matter 8:4849–4864. doi:10.​1039/​C2sm06999g CrossRef
    Shinoda W, DeVane R, Klein ML (2012) Computer simulation studies of self-assembling macromolecules. Curr Opin Struc Biol 22:175–186. doi:10.​1016/​j.​sbi.​2012.​01.​011 CrossRef
    Spohn P, Hirsch C, Hasler F, Bruinink A, Krug HF, Wick P (2009) C-60 fullerene: a powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. Environ Pollut 157:1134–1139. doi:10.​1016/​j.​envpol.​2008.​08.​013 PubMed CrossRef
    Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21. doi:10.​1002/​smll.​200901158 PubMed CrossRef
    Wang B, Zhang LF, Bae SC, Granick S (2008) Nanoparticle-induced surface reconstruction of phospholipid membranes. Proc Natl Acad Sci U S A 105:18171–18175. doi:10.​1073/​pnas.​0807296105 PubMed PubMedCentral CrossRef
    Wong-Ekkabut J, Baoukina S, Triampo W, Tang IM, Tieleman DP, Monticelli L (2008) Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechnol 3:363–368PubMed CrossRef
    Xia XR et al (2011) Mapping the surface adsorption forces of nanomaterials in biological systems. ACS Nano 5:9074–9081. doi:10.​1021/​Nn203303c PubMed PubMedCentral CrossRef
    Zhang X, Zhang Y, Zheng Y, Wang B (2013) Mechanical characteristics of human red blood cell membrane change due to C60 nanoparticle infiltration. Phys Chem Chem Phys 15:2473–2481. doi:10.​1039/​c2cp42850d PubMed CrossRef
    Zupanc J et al (2012) Experimental evidence for the interaction of C-60 fullerene with lipid vesicle membranes. Carbon 50:1170–1178. doi:10.​1016/​j.​carbon.​2011.​10.​030 CrossRef
  • 作者单位:Barbara Drašler (1)
    Damjana Drobne (1)
    Nataša Poklar Ulrih (2)
    Ajda Ota (2)

    1. Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000, Ljubljana, Slovenia
    2. Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Plant Sciences
    Zoology
  • 出版者:Springer Wien
  • ISSN:1615-6102
文摘
Fullerenes (C60) are some of the most promising carbon nanomaterials to be used for medical applications as drug delivery agents. Computational and experimental studies have proposed their ability to enter cells by penetrating lipid bilayers. The aim of our study was to provide experimental evidence on whether pristine C60 in physiological media could penetrate cell membranes. The effect was tested on phospholipid vesicles (liposomes) composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, and validated on isolated human red blood cells (RBCs). We incubated the liposomes in an aqueous suspension of C60 and dissolved the lipids and C60 together in chloroform and subsequently formatted the liposomes. By differential scanning calorimetry measurements, we assessed the effect of C60 on the phospholipid thermal profile. The latter was not affected after the incubation of liposomes in the C60 suspension; also, a shape transformation of RBCs did not occur. Differently, by dispersing both C60 and the phospholipids in chloroform, we confirmed the possible interaction of C60 with the bilayer. We provide experimental data suggesting that the suspension medium is an important factor in determining the C60-membrane interaction, which is not always included in computational studies. Since the primary particle size is not the only crucial parameter in C60-membrane interactions, it is important to determine the most relevant characteristics of their effects on membranes. Keywords Fullerene C60 Liposomes Human erythrocytes Experimental medium

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700