Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency
详细信息    查看全文
  • 作者:Guido P. Zeegers ; Barbara F. Günthardt…
  • 关键词:C60 ; Electrical conductivity ; Electrical resistivity ; Electrospray deposition ; Fullerene ; Ionization mechanism ; LDI ; MALDI ; Thermal conductivity
  • 刊名:Journal of The American Society for Mass Spectrometry
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:27
  • 期:4
  • 页码:699-708
  • 全文大小:1,480 KB
  • 参考文献:1.Karas, M., Bachmann, D., Hillenkamp, F.: Influence of the wavelength in high-irradiance ultraviolet-laser desorption mass-spectrometry of organic-molecules. Anal. Chem. 57, 2935–2939 (1985)CrossRef
    2.Karas, M., Bachmann, D., Bahr, U., Hillenkamp, F.: Matrix-assisted ultraviolet-laser desorption of nonvolatile compounds. Int. J. Mass Spectrom. Ion Process. 78, 53–68 (1987)CrossRef
    3.Knochenmuss, R., Zenobi, R.: MALDI ionization: the role of in-plume processes. Chem. Rev. 103, 441–452 (2003)CrossRef
    4.Zenobi, R., Knochenmuss, R.: Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev. 17, 337–366 (1998)CrossRef
    5.Ehring, H., Karas, M., Hillenkamp, F.: Role of photoionization and photochemistry in ionization processes of organic-molecules and relevance for matrix-assisted laser desorption ionization mass-spectrometry. Org. Mass Spectrom. 27, 472–480 (1992)CrossRef
    6.Kovalenko, L.J., Maechling, C.R., Clemett, S.J., Philippoz, J.M., Zare, R.N., Alexander, C.M.O.: Microscopic organic-analysis using 2-step laser mass-spectrometry - application to meteoritic acid residues. Anal. Chem. 64, 682–690 (1992)CrossRef
    7.Allwood, D.A., Dyer, P.E., Dreyfus, R.W.: Ionization modelling of matrix molecules in ultraviolet matrix-assisted laser desorption/ionization. Rapid Commun. Mass Spectrom. 11, 499–503 (1997)CrossRef
    8.Allwood, D.A., Dyer, P.E., Dreyfus, R.W., Perera, I.K.: Plasma modelling of matrix assisted UV laser desorption ionisation (MALDI). Appl. Surf. Sci. 109, 616–620 (1997)CrossRef
    9.Knochenmuss, R., Zhigilei, L.V.: Molecular dynamics model of ultraviolet matrix-assisted laser desorption/ionization including ionization processes. J. Phys. Chem. B 109, 22947–22957 (2005)CrossRef
    10.Knochenmuss, R.: A quantitative model of ultraviolet matrix-assisted laser desorption/ionization. J. Mass Spectrom. 37, 867–877 (2002)CrossRef
    11.Liu, B.H., Charkin, O.P., Klemenko, N., Chen, C.W., Wang, Y.S.: Initial ionization reaction in matrix-assisted laser desorption/ionization. J. Phys. Chem. B 114, 10853–10859 (2010)CrossRef
    12.Chang, W.C., Huang, L.C.L., Wang, Y.S., Peng, W.P., Chang, H.C., Hsu, N.Y., Yang, W.B., Chen, C.H.: Matrix-assisted laser desorption/ionization (MALDI) mechanism revisited. Anal. Chim. Acta 582, 1–9 (2007)CrossRef
    13.Knochenmuss, R., Karbach, V., Wiesli, U., Breuker, K., Zenobi, R.: The matrix suppression effect in matrix-assisted laser desorption/ionization: application to negative ions and further characteristics. Rapid Commun. Mass Spectrom. 12, 529–534 (1998)CrossRef
    14.Karas, M., Gluckmann, M., Schafer, J.: Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J. Mass Spectrom. 35, 1–12 (2000)CrossRef
    15.Jaskolla, T.W., Karas, M.: Compelling evidence for Lucky Survivor and gas-phase protonation: the unified MALDI analyte protonation mechanism. J. Am. Soc. Mass Spectrom. 22, 976–988 (2011)CrossRef
    16.Chen, X.J., Carroll, J.A., Beavis, R.C.: Near-ultraviolet-induced matrix-assisted laser desorption/ionization as a function of wavelength. J. Am. Soc. Mass Spectrom. 9, 885–891 (1998)CrossRef
    17.Dashtiev, M., Wafler, E., Rohling, U., Gorshkov, M., Hillenkamp, F., Zenobi, R.: Positive and negative analyte ion yield in matrix-assisted laser desorption/ionization. Int. J. Mass Spectrom. 268, 122–130 (2007)CrossRef
    18.Knochenmuss, R.: Photoionization pathways and free electrons in UV-MALDI. Anal. Chem. 76, 3179–3184 (2004)CrossRef
    19.Brown, R.S., Lennon, J.J.: Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser-desorption ionization linear time-of-flight mass-spectrometer. Anal. Chem. 67, 1998–2003 (1995)CrossRef
    20.Wiley, W.C., Mclaren, I.H.: Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 26, 1150–1157 (1955)CrossRef
    21.Guenther, S., Koestler, M., Schulz, O., Spengler, B.: Laser spot size and laser power dependence of ion formation in high resolution MALDI imaging. Int. J. Mass Spectrom. 294, 7–15 (2010)CrossRef
    22.Lai, Y.H., Chen, B.G., Lee, Y.T., Wang, Y.S., Lin, S.H.: Contribution of thermal energy to initial ion production in matrix-assisted laser desorption/ionization observed with 2,4,6-trihydroxyacetophenone. Rapid Commun. Mass Spectrom. 28, 1716–1722 (2014)CrossRef
    23.Smalley, R.E.: Self-assembly of the fullerenes. Acc. Chem. Res. 25, 98–105 (1992)CrossRef
    24.Takahata, Y., Hara, T., Narita, S., Shibuya, T.: Ionization energies, electron affinities, and absorption spectrum of fullerene C-60 calculated with the semiempirical HAM/3 and CNDO/S methods. Theochem. J. Mol. Struct. 431, 219–227 (1998)CrossRef
    25.de Vries, J., Steger, H., Kamke, B., Menzel, C., Weisser, B., Kamke, W., Hertel, I.V.: Single-photon ionization of C-60-fullerene and C-70-fullerene with synchrotron radiation – determination of the ionization-potential of C-60. Chem. Phys. Lett. 188, 159–162 (1992)CrossRef
    26.Gao, C.Z., Wopperer, P., Dinh, P.M., Suraud, E., Reinhard, P.G.: On the dynamics of photo-electrons in C-60. J. Phys. B At. Mol. Opt. 48, 105102 (2015)
    27.Zimmerman, J.A., Eyler, J.R., Bach, S.B.H., Mcelvany, S.W.: Magic number carbon clusters—ionization potentials and selective reactivity. J. Chem. Phys. 94, 3556–3562 (1991)CrossRef
    28.Yoo, R.K., Ruscic, B., Berkowitz, J.: Vacuum ultraviolet photoionization mass-spectrometric study of C-60. J. Chem. Phys. 96, 911–918 (1992)CrossRef
    29.Reynolds, P.J.: North-Holland: Amsterdam, New York (1993)
    30.Wang, L.S., Conceicao, J., Jin, C.M., Smalley, R.E.: Threshold photodetachment of Cold C60-. Chem. Phys. Lett. 182, 5–11 (1991)CrossRef
    31.Yang, S.H., Pettiette, C.L., Conceicao, J., Cheshnovsky, O., Smalley, R.E.: Ups of buckminsterfullerene and other large clusters of carbon. Chem. Phys. Lett. 139, 233–238 (1987)CrossRef
    32.Lykke, K.R., Wurz, P.: Direct Detection of neutral products from photodissociated-C60. J. Phys. Chem. US 96, 3191–3193 (1992)CrossRef
    33.Jaffke, T., Illenberger, E., Lezius, M., Matejcik, S., Smith, D., Mark, T.D.: Formation of C60(-) and C70(-) by free-electron capture—activation-energy and effect of the internal energy on lifetime. Chem. Phys. Lett. 226, 213–218 (1994)CrossRef
    34.Garden, R.W., Sweedler, J.V.: Heterogeneity within MALDI samples as revealed by mass spectrometric imaging. Anal. Chem. 72, 30–36 (2000)CrossRef
    35.Taylor, R., Parsons, J.P., Avent, A.G., Rannard, S.P., Dennis, T.J., Hare, J.P., Kroto, H.W., Walton, D.R.M.: Degradation of C60 by light. Nature 351, 277 (1991)CrossRef
    36.Hare, J.P., Kroto, H.W., Taylor, R.: Preparation and UV visible spectra of fullerenes C60 and C70. Chem. Phys. Lett. 177, 394–398 (1991)CrossRef
    37.Barrow, M.P., Drewello, T.: Significant interferences in the post source decay spectra of ion-gated fullerene and coalesced carbon cluster ions. Int. J. Mass Spectrom. 203, 111–125 (2000)CrossRef
    38.Atamny, F., Baiker, A., Muhr, H.J., Nesper, R.: Afm and Xrd investigation of crystalline vapor-deposited C-60 films. Fresenius J. Anal. Chem. 353, 433–438 (1995)CrossRef
    39.Senthilkumar, V., Vickraman, P., Jayachandran, M., Sanjeeviraja, C.: Structural and optical properties of indium tin oxide (ITO) thin films with different compositions prepared by electron beam evaporation. Vacuum 84, 864–869 (2010)CrossRef
    40.Beer, A.C., Willardson, R.K.: Physics of III-V compounds. In: Semiconductors and semimetals, vol 2. Academic Press, New York (1966)
    41.Yeretzian, C., Hansen, K., Diederich, F., Whetten, R.L.: Coalescence reactions of fullerenes. Nature 359, 44–47 (1992)CrossRef
    42.Prabhudesai, V.S., Nandi, D., Krishnakumar, E.: Low energy electron attachment to C-60. Eur. Phys. J. D. 35, 261–266 (2005)CrossRef
    43.Ptasinska, S., Echt, O., Denifl, S., Stano, M., Sulzer, P., Zappa, F., Stamatovic, A., Scheier, P., Märk, T.D.: Electron attachment to higher fullerenes and to Sc3N@C-80. J. Phys. Chem. A 110, 8451–8456 (2006)CrossRef
    44.Elhamidi, O., Pommier, J., Abouaf, R.: Low energy electron impact on C-76 and C-84: excitation, metastable anion formation, and lifetime. Int. J. Mass Spectrom. 205, 17–25 (2001)CrossRef
    45.Wurz, P., Lykke, K.R.: Kinetics of multiphoton excitation and fragmentation of C-60. Chem. Phys. 184, 335–346 (1994)CrossRef
    46.Berkowitz, J.: Sum rules and the photoabsorption cross sections of C-60. J. Chem. Phys. 111, 1446–1453 (1999)CrossRef
    47.Reinkoster, A., Korica, S., Prumper, G., Viefhaus, J., Godehusen, K., Schwarzkopf, O., Mast, M., Becker, U.: The photoionization and fragmentation of C-60 in the energy range 26–130 eV. J. Phys. B Atomic Mol. Opt. 37, 2135–2144 (2004)CrossRef
    48.Vostrikov, A.A., Dubnov, D.Y., Agarkov, A.A.: Inelastic interaction of an electron with a C-60 cluster. High Temp. 39, 22–30 (2001)CrossRef
    49.Kasperovich, V., Tikhonov, G., Kresin, V.V.: Low-energy electron capture by free C-60 and the importance of polarization interaction. Chem. Phys. Lett. 337, 55–60 (2001)CrossRef
    50.Huang, J., Carman, H.S., Compton, R.N.: Low-energy-electron attachment to C-60. J. Phys. Chem. US 99, 1719–1726 (1995)CrossRef
    51.Vasilev, Y.V., Tuktarov, R.F., Mazunov, V.A.: Resonant electron capture mass spectra of fullerenes C-60 and C-70. Rapid Commun. Mass Spectrom. 11, 757–761 (1997)CrossRef
    52.Klaiman, S., Gromov, E.V., Cederbaum, L.S.: All for one and one for all: accommodating an extra electron in C-60. Phys. Chem. Chem. Phys. 16, 13287–13293 (2014)CrossRef
    53.Vasil’ev, Y.V., Abzalimov, R.R., Nasibullaev, S.K., Drewello, T.: C-60(-) mean lifetime as a function of electron energy and molecular temperature. Fuller. Nanotube Carbon Nanostruct. 12, 229–234 (2004)CrossRef
    54.Liu, Z.Y., Wang, C.R., Huang, R.B., Zheng, L.S.: Mass-distribution of C-60 and C-70 coalescence products produced by direct laser vaporization. Int. J. Mass Spectrom. Ion Process. 145, 1–7 (1995)CrossRef
    55.Momma, C., Chichkov, B.N., Nolte, S., von Alvensleben, F., Tunnermann, A., Welling, H., Wellegehausen, B.: Short-pulse laser ablation of solid targets. Opt. Commun. 129, 134–142 (1996)CrossRef
    56.Menzel, C., Dreisewerd, K., Berkenkamp, S., Hillenkamp, F.: The role of the laser pulse duration in infrared matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 13, 975–984 (2002)CrossRef
    57.Dreisewerd, K., Schurenberg, M., Karas, M., Hillenkamp, F.: Matrix-assisted laser desorption/ionization with nitrogen lasers of different pulse widths. Int. J. Mass Spectrom. Ion Process. 154, 171–178 (1996)CrossRef
    58.Kobayashi, T., Matsuo, Y.: Study on the carbon fragment anions produced by femtosecond laser ablation of solid C-60. J. Chem. Phys. 134, 064320 (2011)
    59.Tsai, S.T., Chen, C.W., Huang, L.C.L., Huang, M.C., Chen, C.H., Wang, Y.S.: Simultaneous mass analysis of positive and negative ions using a dual-polarity time-of-flight mass spectrometer. Anal. Chem. 78, 7729–7734 (2006)CrossRef
    60.Lai, Y.H., Wang, C.C., Lin, S.H., Lee, Y.T., Wang, Y.S.: Solid-phase thermodynamic interpretation of ion desorption in matrix-assisted laser desorption/ionization. J. Phys. Chem. B 114, 13847–13852 (2010)CrossRef
  • 作者单位:Guido P. Zeegers (1)
    Barbara F. Günthardt (1)
    Renato Zenobi (1)

    1. Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093, Zürich, Switzerland
  • 刊物主题:Analytical Chemistry; Biotechnology; Organic Chemistry; Proteomics; Bioinformatics;
  • 出版者:Springer US
  • ISSN:1879-1123
文摘
Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0–3.53 Jcm−2) and the ion extraction delay time (0–950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700