Genome Shuffling and Ribosome Engineering of Streptomyces actuosus for High-Yield Nosiheptide Production
详细信息    查看全文
  • 作者:Qingling Wang (1)
    Dong Zhang (1)
    Yudong Li (1)
    Fuming Zhang (2)
    Cao Wang (1) (3)
    Xinle Liang (1)
  • 关键词:Nosiheptide ; Genome shuffling ; Ribosome engineering ; Sequence difference ; Streptomyces actuosus
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:173
  • 期:6
  • 页码:1553-1563
  • 全文大小:4,525 KB
  • 参考文献:1. Benazet, F., Cartier, M., Florent, J., Godard, C., Jung, G., Lunel, J., et al. (1979). Nosiheptide, a sulfur-containing peptide antibiotic isolated from / Streptomyces actuosus 40037. / Experientia, 36, 414-16. CrossRef
    2. Wang, S. F., Zhou, S. X., & Liu, W. (2013). Opportunities and challenges from current investigations into the biosynthetic logic of nosiheptide-represented thiopeptide antibiotics. / Current Opinion in Chemical Biology, 17, 626-34. CrossRef
    3. Yu, Y., Duan, L., Zhang, Q., Liao, R. J., Ding, Y., Pan, H., et al. (2009). Nosiheptide biosynthesis featuring a unique indole side ring formation on the characteristic thiopeptide framework. / ACS Chemical Biology, 4, 855-64. CrossRef
    4. Haste, N. M., Thienphrapa, W., Tran, D. N., Loesgen, S., Sun, P., Nam, S. J., et al. (2012). Activity of the thiopeptide antibiotic nosiheptide against contemporary strains of methicillin-resistant / Staphylococcus aureus. Journal of Antibiotics (Tokyo), 65, 593-98. CrossRef
    5. Harms, J. M., Wilson, D. N., Schluenzen, F., Connell, S. R., Stachelhaus, T., Zaborowska, Z., et al. (2008). Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. / Molecular Cell, 30, 26-8. CrossRef
    6. Cromwells, G. L., Stahlys, T. S., Speer, V. C., & O’Kelly, R. (1984). Efficacy of nosiheptide as a growth promotant for growing-finishing swine—a cooperative study. / Journal of Animal Science, 59, 1125-128.
    7. Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P., & del Cardayre, S. B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. / Nature, 415, 644-46. CrossRef
    8. Zheng, D. Q., Wu, X. C., Wang, P. M., Chi, X. Q., Tao, X. L., Li, P., et al. (2011). Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in / Saccharomyces cerevisiae. The Journal of Industrial Microbiology and Biotechnology, 38, 415-22. CrossRef
    9. Hida, H., Yamada, T., & Yamada, Y. (2007). Genome shuffling of / Streptomyces sp. U121 for improved production of hydroxycitric acid. / Applied Microbiology and Biotechnology, 73, 1387-393. CrossRef
    10. Zheng, P., Liu, M., Liu, X. D., Du, Q. Y., Ni, Y., & Sun, Z. H. (2012). Genome shuffling improves thermotolerance and glutamic acid production of / Corynebacteria glutamicum. World Journal of Microbiology and Biotechnology, 28, 1035-043. CrossRef
    11. Li, W., Chen, G., Gu, L., Zeng, W., & Liang, Z. (2013). Genome shuffling of / Aspergillus niger for improving transglycosylation activity. / Applied Biochemistry and Biotechnology, 172, 50-1. CrossRef
    12. Shima, J., Hesketh, A., Okamoto, S., Kawamoto, S., & Ochi, K. (1996). Induction of actinorhodin production by / rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in / Streptomyces lividans and / Streptomyces coelicolor A3(2). / Journal of Bacteriology, 178, 7276-284.
    13. Ochi, K., Okamoto, S., Tozawa, Y., Inaoka, T., Hosaka, T., Xu, J., et al. (2004). Ribosome engineering and secondary metabolite production. / Advances in Applied Microbiology, 56, 155-84. CrossRef
    14. Ochi, K. (2007). From microbial differentiation to ribosome engineering. / Bioscience, Biotechnology, and Biochemistry, 71, 1373-386. CrossRef
    15. Tamehiro, N., Hosaka, T., Xu, J., Hu, H., Otake, N., & Ochi, K. (2003). Innovative approach for improvement of an antibiotic-overproducing industrial strain of / Streptomyces albus. Applied and Environmental Microbiology, 69, 6412-417. CrossRef
    16. Wang, G., Hosaka, T., & Ochi, K. (2008). Dramatic activation of antibiotic production in / Streptomyces coelicolor by cumulative drug resistance mutations. / Applied and Environmental Microbiology, 74, 2834-840. CrossRef
    17. Zhang, J., Wang, X. J., Diao, J. N., He, H. R., Zhang, Y. J., & Xiang, W. S. (2013). Streptomycin resistance-aided genome shuffling to improve doramectin productivity of / Streptomyces avermitilis NEAU1069. / The Journal of Industrial Microbiology and Biotechnology, 40, 877-89. CrossRef
    18. Liu, Z., Zhao, X., & Bai, F. (2013). Production of xylanase by an alkaline-tolerant marine-derived / Streptomyces viridochromogenes strain and improvement by ribosome engineering. / Applied Microbiology and Biotechnology, 97, 4361-368. CrossRef
    19. Lv, X. A., Jin, Y. Y., Li, Y. D., Zhang, H., & Liang, X. L. (2013). Genome shuffling of / Streptomyces viridochromogenes for improved production of avilamycin. / Applied Microbiology and Biotechnology, 97, 641-48. CrossRef
    20. Zhang, X., Fen, M., Shi, X., Bai, L., & Zhou, P. (2008). Overexpression of yeast S-adenosylmethionine synthetase / metK in / Streptomyces actuosus leads to increased production of nosiheptide. / Applied Microbiology and Biotechnology, 78, 991-95. CrossRef
    21. Manteca, A., Alvarez, R., Salazar, N., Yague, P., & Sanchez, J. (2008). Mycelium differentiation and antibiotic production in submerged cultures of / Streptomyces coelicolor. Applied and Environmental Microbiology, 74, 3877-886. CrossRef
    22. Nakajima, A., Wada, K., Katayama, K., Saubermann, L., Osawa, E., Nagase, H., et al. (2002). Gene expression profile after peroxisome proliferator activator receptor-gamma ligand administration in dextran sodium sulfate mice. / Journal of Gastroenterology, 37(Suppl 14), 62-6. CrossRef
    23. Mocek, U., Chen, L. C., Keller, P. J., Houck, D. R., Beale, J. M., & Floss, H. G. (1989). 1H and 13C NMR assignments of the thiopeptide antibiotic nosiheptide. / The Journal of Antibiotics, 42, 1643-648. CrossRef
    24. Stemmer, & Willem, P. C. (2001). Molecular breeding of genes, pathways and genomes by DNA shuffling. / Journal of Molecular Catalysis B, 19-0, 3-2.
    25. Xu, B., Jin, Z., Wang, H., Jin, Q., Jin, X., & Cen, P. (2008). Evolution of / Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling. / Applied Microbiology and Biotechnology, 80, 261-67. CrossRef
    26. Mocek, U., Knaggs, A. R., Tsuchiya, R., Nguyen, T., Beale, J. M., & Floss, H. G. (1993). Biosynthesis of modified peptide antibiotic nosiheptide in / Streptomyces actuosus. Journal of the American Chemical Society, 115, 7557-568. CrossRef
    27. Chaudhary, A. K., Dhakal, D., & Sohng, J. K. (2013). An insight into the -omics-based engineering of streptomycetes for secondary metabolite overproduction. / BioMed Research International, 2013, 968518-68533. CrossRef
    28. Yang, H., Wang, Z., Shen, Y., Wang, P., Jia, X., Zhao, L., et al. (2010). Crystal structure of the nosiheptide-resistance methyltransferase of / Streptomyces actuosus. Biochemistry, 49, 6440-450. CrossRef
    29. Singh, K., Wangikar, P., & Jadhav, S. (2012). Correlation between pellet morphology and glycopeptide antibiotic balhimycin production by / Amycolatopsis balhimycina DSM 5908. / The Journal of Industrial Microbiology and Biotechnology, 39, 27-5. CrossRef
  • 作者单位:Qingling Wang (1)
    Dong Zhang (1)
    Yudong Li (1)
    Fuming Zhang (2)
    Cao Wang (1) (3)
    Xinle Liang (1)

    1. Department of Biological Engineering, Zhejiang Gongshang University, Hangzhou, 310035, China
    2. Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
    3. Zhejiang University City College, Hangzhou, 310015, China
  • ISSN:1559-0291
文摘
Nosiheptide is one of the EU-approved sulfur-containing peptides in feed industry to inhibit the growth of the majority of Gram-positive bacteria. The main purpose of this study is directed to breed the high nosiheptide-producers by genome shuffling and ribosome engineering in Streptomyces actuosus AW7. The starting population for shuffling was generated by combining 60Coγ-irradiation with LiCl mutagenesis treatments on the spores. After four rounds of protoplast fusion exposed to streptomycin as adaptive pressure, a high-yield recombinant strain D92 was obtained. In a 10-L fermenter, nosiheptide production reached 1.54?g/L which was 9.20-fold compared to that of the parental strain. Hyphae development, metabolic process, and ribosomal protein S12 sequence were investigated to characterize the differentiation among the recombinants. Several mutations in S12 were believed to be responsible to streptomycin resistance in the tested strain. The results demonstrated that the combination of genome shuffling and ribosome engineering is an efficient approach to breed high-yield industrial strains.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700