Reactivity of triacetone triperoxide and diacetone diperoxide: Insights from nuclear Fukui function
详细信息    查看全文
  • 作者:Matthew J. Swadley (1)
    Panpan Zhou (2)
    Tonglei Li (3)

    1. Pharmaceutical Sciences
    ; University of Kentucky ; Lexington ; Kentucky ; 40536 ; USA
    2. Department of Chemistry
    ; Lanzhou University ; Lanzhou ; 730000 ; Gansu ; China
    3. Industrial & Physical Pharmacy
    ; Purdue University ; West Lafayette ; Indiana ; 47907 ; USA
  • 关键词:nuclear Fukui function ; electronic perturbation ; Hellmann ; Feynman force ; organic crystals ; unimolecular decomposition
  • 刊名:Frontiers of Chemical Science and Engineering
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:9
  • 期:1
  • 页码:114-123
  • 全文大小:732 KB
  • 参考文献:1. Dubnikova, F, Kosloff, R, Almog, J, Zeiri, Y, Boese, R, Itzhaky, H, Alt, A, Keinan, E (2005) Decomposition of triacetone triperoxide is an entropic explosion. Journal of the American Chemical Society 127: pp. 1146-1159 CrossRef
    2. Oxley, J C, Smith, J L, Chen, H (2002) Decomposition of a multi-peroxidic compound: Triacetone triperoxide (tatp). Propellants, Explosives, Pyrotechnics 27: pp. 209-216 CrossRef
    3. Sanderson, J R, Story, P R (1974) Macrocyclic synthesis. The thermal decomposition of dicyclohexylidene diperoxide and tricyclohexylidene triperoxide. Journal of Organic Chemistry 39: pp. 3463-3469 CrossRef
    4. Duin, A C T, Zeiri, Y, Dubnikova, F, Kosloff, R, Goddard, W A (2005) Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide. Journal of the American Chemical Society 127: pp. 11053-11062 CrossRef
    5. Evans, H E, Tulleners, F A J, Sanchez, B L, Rasmussen, C A (1986) An unusual explosive, triacetone triperoxide. Journal of Forensic Sciences 31: pp. 1119-1125
    6. White, G M (1992) An explosive drug case. Journal of Forensic Sciences 37: pp. 652-656
    7. Politzer, P, Murray, J S (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theoretical Chemistry Accounts 108: pp. 134-142 CrossRef
    8. Parr, R G, Yang, W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York
    9. Parr, R G, Yang, W T (1995) Density-functional theory of the electronicstructure of molecules. Annual Review of Physical Chemistry 46: pp. 701-728 CrossRef
    10. Kohn, W, Becke, A D, Parr, R G (1996) Density functional theory of electronic structure. Journal of Physical Chemistry 100: pp. 12974-12980 CrossRef
    11. Geerlings, P, Proft, F, Langenaeker, W (2003) Conceptual density functional theory. Chemical Reviews 103: pp. 1793-1873 CrossRef
    12. DeProft, F, Liu, S B, Geerlings, P (1998) Calculation of the nuclear fukui function and new relations for nuclear softness and hardness kernels. Journal of Chemical Physics 108: pp. 7549-7554 CrossRef
    13. Feynman, R P (1939) Forces in Molecules. Physical Review 56: pp. 340-343 CrossRef
    14. Hellmann, H (1937) Einfuhrung in die quantencheie. Deuticke, Vienna
    15. Cohen, MH, Gandugliapirovano, MV, Kudrnovsky, J (1994) Electronic and nuclear-chemical reactivity. Journal of Chemical Physics 101: pp. 8988-8997 CrossRef
    16. Luty, T, Ordon, P, Eckhardt, C J (2002) A model for mechanochemical transformations: Applications to molecular hardness, instabilities, and shock initiation of reaction. Journal of Chemical Physics 117: pp. 1775-1785 CrossRef
    17. Pacheco-Londono, L C, Primera-Pedrozo, O M, Hernandez-Rivera, S P (2004) Experimental and theoretical model of reactivity and vibrational detectrion modes of triacetone triperoxide (TATP) and homologues. Proceedings of the SPIE-The International Society for Optical Engineering 5617: pp. 190-201
    18. Ayers, P W (2007) The physical basis of the hard/soft acid/base principle. Faraday Discussions 135: pp. 161-190 CrossRef
    19. Ghanty, T K, Ghosh, S K (1993) Correlation between hardness, polarizability, and size of atoms, molecules, and clusters. Journal of Physical Chemistry 97: pp. 4951-4953 CrossRef
    20. Feng, S X, Li, T L (2005) Understanding solid-state reactions of organic crystals with density functional theory-based concepts. Journal of Physical Chemistry A 109: pp. 7258-7263 CrossRef
    21. Li, T L, Feng, S X (2005) Study of crystal packing on the solid-state reactivity of indomethacin with density functional theory. Pharmaceutical Research 22: pp. 1964-1969 CrossRef
    22. Hohenberg, P, Kohn, W (1964) Inhomogeneous electron gas. Physical Review B: Condensed Matter and Materials Physics 136: pp. 864-871 CrossRef
    23. Guerra, M (1990) On the use of diffuse functions for estimating negative electron-affinities with lcao methods. Chemical Physics Letters 167: pp. 315-319 CrossRef
    24. Galbraith, JM, Schaefer, H F (1996) Concerning the applicability of density functional methods to atomic and molecular negative ions. Journal of Chemical Physics 105: pp. 862-864 CrossRef
    25. Proft, F, Sablon, N, Tozer, D J, Geerlings, P (2007) Calculation of negative electron affinity and aqueous anion hardness using kohnsham homo and lumo energies. Faraday Discussions 135: pp. 151-159 CrossRef
    26. Tozer, D J, Proft, F (2005) Computation of the hardness and the problem of negative electron affinities in density functional theory. Journal of Physical Chemistry A 109: pp. 8923-8929 CrossRef
    27. Doll, K, Saunders, V R, Harrison, N M (2001) Analytical hartree-fock gradients for periodic systems. International Journal of Quantum Chemistry 82: pp. 1-13 CrossRef
    28. Groth, P, Baxter, R M, Sletten, J, Nielsen, P H, Lindberg, A A, Jansen, G, Lamm, B, Samuelsson, B (1969) Crystal structure of 3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexa-oxacyclononane (鈥淭rimeric acetone peroxide鈥?. Acta Chemica Scandinavica 23: pp. 1311-1329 CrossRef
    29. Gelalcha, F G, Schulze, B, L枚nnecke, P (2004) 3,3,6,6-Tetramethyl-1,2,4,5-tetroxane: A twinned crystal structure. Acta Crystallographica. Section C, Crystal Structure Communications 60: pp. 180-182 CrossRef
    30. Murray, J S, Concha, M C, Politzer, P (2009) Links between surface electrostatic potentials of energetic molecules, impact sensitivities and c-no2/n-no2 bond dissociation energies. Molecular Physics 107: pp. 89-97 CrossRef
    31. Rice, BM, Pai, S V, Hare, J (1999) Predicting heats of formation of energetic materials using quantum mechanical calculations. Combustion and Flame 118: pp. 445-458 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Industrial Chemistry and Chemical Engineering
  • 出版者:Higher Education Press, co-published with Springer-Verlag GmbH
  • ISSN:2095-0187
文摘
Triacetone triperoxide (TATP) is more sensitive than diacetone diperoxide (DADP) in the solid-state explosion. To explain this reactivity difference, we analyzed the electronic structures and properties of the crystals of both compounds by using Ab initio method to calculate the structures of their individual molecules as well as their lattice structures and particularly calculating Nuclear Fukui function to gain insight into the sensitivity of the initial, rate-determining step of their decomposition. Our results indicate that TATP and DADP crystal structures exhibit significantly different electronic properties. Most notably, the electronic structure of the TATP crystal shows asymmetry among its reactive oxygen atoms as supported by magnitudes of their nuclear Fukui functions. The greater explosion sensitivity of crystalline TATP may be attributed to the properties of its electronic structure. The electronic calculations provided valuable insight into the decomposition sensitivity difference between TATP and DADP crystals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700