The habitat template of phytoplankton morphology-based functional groups
详细信息    查看全文
  • 作者:Carla Kruk (12) ckruk@yahoo.com
    Angel M. Segura (3)
  • 关键词:Morphological traits &#8211 ; Functional groups &#8211 ; Random forest &#8211 ; CART &#8211 ; Environmental change
  • 刊名:Hydrobiologia
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:698
  • 期:1
  • 页码:191-202
  • 全文大小:366.6 KB
  • 参考文献:1. Arrigo, K. R., 2005. Marine microorganisms and global nutrient cycles. Nature 437: 349–355.
    2. Bayley, S. E., I. F. Creed, G. Z. Sass & A. S. Wong, 2007. Frequent regime shifts in trophic states in shallow lakes on the Boreal Plain: alternative “unstable” states? Limnology and Oceanography 52: 2002–2012.
    3. Bell, T. & J. Kalff, 2001. The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnology and Oceanography 46: 1243–1248.
    4. Bonilla, S., L. Aubriot, M. C. S. Soares, M. Gonz谩lez-Piana, A. Fabre, V. L. M. Huszar, M. L眉rling, D. Antoniades, J. Padis谩k & C. Kruk, 2011. What drives the distribution of the bloom forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology 79(3): 594–607.
    5. Breiman, L., 2001. Random forests. Machine Learning 45: 15–32.
    6. Callieri, C. & J. Stockner, 2002. Freshwater autotrophic picoplankton: a review. Journal of Limnology 61: 1–14.
    7. Carpenter, S. R., J. A. Morrice, J. J. Elser, A. S. Amand & N. A. Mackay, 1993. Phytoplankton community dynamics. In Carpenter, S. R. & J. F. Kitchell (eds), The Trophic Cascade in Lakes. Cambridge University Press, Cambridge: 189–209.
    8. Carpenter, S. R., W. A. Brock, J. J. Cole & M. L. Pace, 2009. Leading indicators of phytoplankton transitions caused by resource competition. Theoretical Ecology 2: 139–148.
    9. Carrick, H. J., F. J. Aldridge & C. L. Schelske, 1993. Wind induces phytoplankton biomass and composition in a shallow, productive lake. Limnology and Oceanography 38: 1179–1192.
    10. Chorus, I. & J. Bartram, 1999. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. Chapman & Hall, London.
    11. Conley, D. J., 2002. Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochemical Cycles 16: 1121.
    12. Cutler, D. R., T. C. Edwards Jr, K. H. Beard, A. Cutler, K. T. Hess, J. Gibson & J. J. Lawler, 2007. Random forests for classification in ecology. Ecology 88: 2783–2792.
    13. De Le贸n, L., 2000. Composici贸n y din谩mica de la comunidad fitoplanct贸nica de un embalse subtropical (Salto Grande, Uruguay-Argentina). Tesis de Maestr铆a, Universidad de Concepci贸n, Concepci贸n.
    14. De’ath, G. & K. E. Fabricius, 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81: 3178–3192.
    15. Dray, S. & P. Legendre, 2008. Testing the species traits–environment relationships: the fourth-corner problem revisited. Ecology 89: 3400–3412.
    16. Falkowski, P. G., E. A. Laws, R. T. Barber & J. W. Murray, 2003. Phytoplankton and their role in primary, new, and export production. In Fasham, M. J. R. (ed.), Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change. Springer, Berlin: 99–121.
    17. Follows, M. J., S. Dutkiewicz, S. Grant & S. W. Chisholm, 2007. Emergent biogeography of microbial communities in a model ocean. Science 315: 1843–1846.
    18. Ganf, G. & A. Viner, 1973. Ecological stability in a shallow equatorial lake (L. George, Uganda). Proceedings of the Royal Society B 184: 321–346.
    19. Graham, L. E. & L. W. Wilcox, 2000. Algae. Prentice-Hall, Upper Saddle River.
    20. Hamm, C. E., R. Merkel, O. Springer, P. Jurkojc, C. Maler, K. Prechtel & V. Smetacek, 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421: 841–843.
    21. Hillebrand, H., C. D眉rselen, D. Kirschtel, T. Zohary & U. Pollingher, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.
    22. Huisman, J., H. C. P. Matthijs & P. M. Visser, 2005. Harmful Cyanobacteria. Springer, Dordrecht.
    23. Ibelings, B. W., A. De Bruin, M. Kagami, M. Rijkeboer, M. Brehm & E. Van Donk, 2004. Review of host parasite interactions between freshwater phytoplankton and chytrid fungi (chytridiomycota). Journal of Phycology 40: 437–453.
    24. Izaguirre, I., L. Allende & M. C. Marinone, 2003. Comparative study of the planktonic communities of three lakes of contrasting trophic status at Hope Bay (Antarctic Peninsula). Journal of Plankton Research 25: 1079–1097.
    25. Jansson, M., A. Jonsson, A. Andersson & J. A. N. Karlsson, 2010. Biomass and structure of planktonic communities along an air temperature gradient in subarctic Sweden. Freshwater Biology 55: 691–700.
    26. Keddy, P. A., 1992. A pragmatic approach to functional ecology. Functional Ecology 6: 621–626.
    27. Kim, H. J., L. K. Lee & S. H. Kim, 2009. Effect of nutrients and light intensity on growth of Mallomonas caudata (Synurophyceae). Nordic Journal of Botany 27: 516–522.
    28. Kosten, S., G. Lacerot, E. Jeppesen, D. Da Motta Marques, E. H. Van Nes, N. Mazzeo & M. Scheffer, 2009. Effects of submerged vegetation on water clarity across climates. Ecosystems 12: 1117–1129.
    29. Kristlansen, J. & E. Takahashi, 1982. Chrysophyceae: introduction and bibliography. In Rosowski, J. & B. Parker (eds), Selected Papers in Phycology 2. Phycological Society of America, Brandenburg: 698–704.
    30. Kruk, C., N. Mazzeo, G. Lacerot & C. S. Reynolds, 2002. Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement. Journal of Plankton Research 24: 901–912.
    31. Kruk, C., L. Rodr铆guez-Gallego, M. Meerhoff, F. Quintans, G. Lacerot, N. Mazzeo, F. Scasso, J. Paggi, E. T. H. M. Peeters & M. Scheffer, 2009. Determinants of biodiversity in subtropical shallow lakes (Atlantic coast, Uruguay). Freshwater Biology 54: 2628–2641.
    32. Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. L眉rling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.
    33. Kruk, C., E. T. H. M. Peeters, E. H. Van Nes, V. L. M. Huszar, L. S. Costa & M. Scheffer, 2011. Phytoplankton community composition can be predicted best in terms of morphological groups. Limnology and Oceanography 56: 110–118.
    34. Le Qu茅r茅, C., S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson & D. Wolf-Gladrow, 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biology 11: 2016–2040.
    35. Levin, S. A., 1992. The problem of pattern and scale in ecology. Ecology 73(1943): 1967.
    36. Lewis, W. M. J., 1976. Surface/volume ratio: implications for phytoplankton morphology. Science 192: 885–887.
    37. Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.
    38. Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.
    39. Mazzeo, N., L. Rodr铆guez-Gallego, C. Kruk, M. Meerhoff, J. Gorga, G. Lacerot, F. Quintans, M. Loureiro, D. Larrea & F. Garc铆a-Rodr铆guez, 2003. Effects of Egeria densa Planch. beds on a shallow lake without piscivorous fish. Hydrobiologia 506–509: 591–602.
    40. McGill, B., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178–185.
    41. M酶ller, A. P. & M. D. Jennions, 2002. How much variance can be explained by ecologists and evolutionary biologists. Oecologia 132: 492–500.
    42. Naselli-Flores, L., J. Padis谩k & M. Albay, 2007. Shape and size in phytoplankton ecology: do they matter? Hydrobiologia 578: 157–161.
    43. Pacheco, J. P., C. Iglesias, M. Meerhoff, C. Fosalba, G. Goyenola, F. Teixeira-De Mello, S. Garc铆a, M. Gel贸s & F. Garc铆a-Rodr铆guez, 2010. Phytoplankton community structure in five subtropical shallow lakes with different trophic status (Uruguay): a morphology based approach. Hydrobiologia 646: 187–197.
    44. Padis谩k, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia 384: 41–53.
    45. Padis谩k, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.
    46. Peretyatko, A., S. Teissier, J. J. Symoens & L. Triest, 2007. Phytoplankton biomass and environmental factors over a gradient of clear to turbid peri-urban ponds. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 584–601.
    47. Pianka, E. R., 1970. On r and K selection. American Naturalist 104: 592–597.
    48. R, 2011. Development Core Team R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna.
    49. Raven, J. A., 1998. Small is beautiful: the picophytoplankton. Functional Ecology 12: 503–513.
    50. Reynolds, C. S., 1984a. Phytoplankton periodicity: the interaction of form, function and environmental variability. Freshwater Biology 14: 111–142.
    51. Reynolds, C. S., 1984b. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.
    52. Reynolds, C. S., 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, New York: 388–433.
    53. Reynolds, C. S., 1997. Vegetation Process in the pelagic: a model for ecosystem theory. Excellence in Ecology. Ecology Institute, Luhe.
    54. Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.
    55. Reynolds, C., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.
    56. Roelke, D. L., 2000. Copepod food-quality threshold as a mechanism influencing phytoplankton succession and accumulation of biomass, and secondary productivity: a modeling study with management implications. Ecological Modelling 134: 245–274.
    57. Salmaso, N. & J. Padis谩k, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.
    58. Sandgren, C. D. (ed.), 1988. Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 442.
    59. Scheffer, M., S. Rinaldi, A. Gragnani, L. Mur & E. H. Van Nes, 1997. On the dominance of filamentous Cyanobacteria in shallow, turbid lakes. Ecology 78: 272–282.
    60. Scheffer, M., S. Carpenter, J. A. Frey, C. Folke & B. Walker, 2001a. Catastrophic shifts in ecosystems. Nature 413: 591–596.
    61. Scheffer, M., D. Straile, E. H. Van Nes & H. Hosper, 2001b. Climatic warming causes regime shifts in lake food webs. Limnology and Oceanography 46: 1780–1783.
    62. Scheffer, M., S. Rinaldi, J. Huisman & F. J. Weissing, 2003. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491: 9–18.
    63. Segura, A., C. Kruk, D. Calliari & H. Fort, 2010. Trait-based approach disentangles core features of phytoplankton succession. Morphology captures function in phytoplankton. A large-scale analysis of phytoplankton communities in relation to their environment. Ph.D. Thesis, pp. 75–90. University of Wageningen, Wageningen, The Netherlands.
    64. Segura, A. M., D. Calliari, C. Kruk, D. Conde, S. Bonilla & H. Fort, 2011. Emergent neutrality drives phytoplankton species coexistence. Proceedings of the Royal Society B 278: 2355–2361.
    65. Siver, P. A. & J. S. Hamer, 1989. Multivariate statistical analysis of the factors controlling the distribution of scaled chrysophytes. Limnology and Oceanography 34: 368–381.
    66. Smetacek, V., 2001. A watery arms race. Nature 411: 745.
    67. Sommer, U., 1989. Plankton Ecology: Succession in Plankton Communities. Springer, Berlin.
    68. Southwood, T. R. E., 1977. Habitat, the templet for ecological strategies? Journal of Animal Ecology 46: 337–365.
    69. Southwood, T. R. E., 1988. Tactics, strategies and templets. Oikos 52: 3–18.
    70. Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJ.
    71. Tilman, D., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, NJ.
    72. Tilman, D., R. Kiesling, R. Sterner & S. Tilman, 1986. Green, blue-green and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon, and nitrogen. Archiv fur Hydrobiologie 106: 473–485.
    73. Uterm枚hl, H., 1958. Zur Vervollkommnung der quantitativen phytoplankton-methodik. Mitteilungen Internationale Vereinigung f眉r Theoretische und Angewandte Limnologie 9: 1–38.
    74. Vollenweider, R. A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell’ Istituto Italiano di Idrobiologia 33: 53–83.
    75. Walsby, A. E. & C. S. Reynolds, 1980. Sinking and floating. In Morris, I. G. (ed.), The Physiological Ecology of Phytoplankton. Blackwell Scientific Publications, Oxford: 371–412.
    76. Zhao, J., M. Ramin, V. Cheng & G. B. Arhonditsis, 2008. Competition patterns among phytoplankton functional groups: how useful are the complex mathematical models? Acta Oecologica 33: 324–344.
  • 作者单位:1. Laboratory of Ethology, Ecology and Evolution, Instituto de Investigaciones Biol贸gicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, Uruguay2. Functional Ecology of Aquatic Systems, Limnology, IECA, Facultad de Ciencias, Universidad de la Rep煤blica, Igu谩 4225, 11400 Montevideo, Uruguay3. Functional Ecology of Aquatic Systems, Oceanography and Marine Ecology, IECA, Facultad de Ciencias, Universidad de la Rep煤blica, Igu谩 4225, 11400 Montevideo, Uruguay
  • ISSN:1573-5117
文摘
The identification of the main factors driving phytoplankton community structure is essential to understand and adequately manage freshwater ecosystems. We hypothesize that differences in morphological traits reflect phytoplankton functional properties that will be selected under particular environmental conditions, namely their habitat template. We apply a morphology-based functional groups (MBFG) approach to classify phytoplankton organisms and define each group template. We use machine learning techniques to classify a large number of phytoplankton communities and environmental variables from different climate zones and continents. Random forest analysis explained well the distribution of most groups’ biovolume and the selected variables reflected ecological preferences according to morphology. By means of a classification tree it was also possible to identify thresholds of the environmental variables promoting groups dominance in different lakes. For example group III (filaments with aerotopes and high surface/volume including potentially toxic species) was dominant when light attenuation coefficient was >3.9 m−1 and total nitrogen was >2,800 μg l−1. We demonstrate that morphology captures ecological preferences of phytoplankton groups and provides empirical values to describe their habitat template.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700