Reduced Density Matrix Functional Theory (RDMFT) and Linear Response Time-Dependent RDMFT (TD-RDMFT)
详细信息    查看全文
  • 关键词:Density matrix functional ; Reduced density matrix ; Density matrix functional theory ; Time ; dependent density matrix functional ; Electron correlation
  • 刊名:Topics in Current Chemistry
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:368
  • 期:1
  • 页码:125-183
  • 全文大小:671 KB
  • 参考文献:1.Gilbert TL (1975) Hohenberg–Kohn theorem for nonlocal external potentials. Phys Rev B 12(6):2111–2120. doi:10.​1103/​PhysRevB.​12.​2111 CrossRef
    2.Coleman AJ (1963) Structure of fermion density matrices. Rev Mod Phys 35(3):668–687. doi:10.​1103/​RevModPhys.​35.​668 CrossRef
    3.Smith DW (1966) N-representability problem for fermion density matrices. II. The first-order density matrix with N even. Phys Rev 147(4):896–898. doi:10.​1103/​PhysRev.​147.​896 CrossRef
    4.Levy M (1979) Universal variational functionals of electron-densities, first-order density-matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci U S A 76(12):6062–6065. doi:10.​1073/​pnas.​76.​12.​6062 CrossRef
    5.Levy M (1987) Correlation energy functionals of one-matrices and Hartree–Fock densities. In: Erdahl R, Smith VHJ (eds) Density matrices and density functionals. Reidel, Dordrecht, pp 479–498CrossRef
    6.Zumbach G, Maschke K (1985) Density-matrix functional theory for the N-particle ground-state. J Chem Phys 82(12):5604–5607. doi:10.​1063/​1.​448595 CrossRef
    7.Valone SM (1980) Consequences of extending 1 matrix energy functionals from pure-state representable to all ensemble representable 1 matrices. J Chem Phys 73(3):1344–1349. doi:10.​1063/​1.​440249 CrossRef
    8.Valone SM (1980) A one-to-one mapping between one-particle densities and some normal-particle ensembles. J Chem Phys 73(9):4653–4655. doi:10.​1063/​1.​440656 CrossRef
    9.Nguyen-Dang TT, Ludeña EV, Tal Y (1985) Variation of the energy functional of the reduced first-order density operator. J Mol Struct (THEOCHEM) 120:247–264. doi:10.​1016/​0166-1280(85)85114-9 CrossRef
    10.Donnelly RA (1979) Fundamental difference between energy functionals based on 1st-order and on 2nd-order density matrices. J Chem Phys 71(7):2874–2879. doi:10.​1063/​1.​438678 CrossRef
    11.Donnelly RA, Parr RG (1978) Elementary properties of an energy functional of first-order reduced density matrix. J Chem Phys 69(10):4431–4439. doi:10.​1063/​1.​436433 CrossRef
    12.Löwdin PO (1955) Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys Rev 97(6):1474–1489. doi:10.​1103/​PhysRev.​97.​1474 CrossRef
    13.Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136(3B):B864–B871. doi:10.​1103/​PhysRev.​136.​B864 CrossRef
    14.Lieb EH (1981) Variational principle for many-fermion systems. Phys Rev Lett 46(7):457–459. doi:10.​1103/​PhysRevLett.​46.​457 CrossRef
    15.Yasuda K (2001) Correlation energy functional in the density-matrix functional theory. Phys Rev A 63:032517. doi:10.​1103/​PhysRevA.​63.​032517 CrossRef
    16.Cioslowski J (2005) New constraints upon the electron–electron repulsion energy functional of the one-electron reduced density matrix. J Chem Phys 123:164106CrossRef
    17.Cioslowski J, Pernal K, Ziesche P (2002) Systematic construction of approximate one-matrix functionals for the electron–electron repulsion energy. J Chem Phys 117(21):9560–9566. doi:10.​1063/​1.​1516804 CrossRef
    18.Müller AMK (1984) Explicit approximate relation between reduced two-particle and one-particle density-matrices. Phys Lett A 105(9):446–452. doi:10.​1016/​0375-9601(84)91034-X CrossRef
    19.Buijse MA, Baerends EJ (2002) An approximate exchange-correlation hole density as a functional of the natural orbitals. Mol Phys 100(4):401–421. doi:10.​1080/​0026897011007024​3 CrossRef
    20.Buijse MA (1991) Ph.D. thesis, Electron correlation. Fermi and Coulomb holes, dynamical and nondynamical correlation. Vrije Universiteit, Amsterdam
    21.Frank RL, Lieb EH, Seiringer R, Siedentop H (2007) Muller’s exchange-correlation energy in density-matrix-functional theory. Phys Rev A 76(5):052517. doi:10.​1103/​PhysRevA.​76.​052517 CrossRef
    22.Staroverov VN, Scuseria GE (2002) Assessment of simple exchange-correlation energy functionals of the one-particle density matrix. J Chem Phys 117(6):2489–2495. doi:10.​1063/​1.​1491395 CrossRef
    23.Herbert JM, Harriman JE (2003) Self-interaction in natural orbital functional theory. Chem Phys Lett 382(1–2):142–149. doi:10.​1016/​j.​cplett.​2003.​10.​057 CrossRef
    24.Herbert JM, Harriman JE (2003) N-representability and variational stability in natural orbital functional theory. J Chem Phys 118(24):10835–10846. doi:10.​1063/​1.​1574787 CrossRef
    25.Cohen AJ, Baerends EJ (2002) Variational density matrix functional calculations for the corrected Hartree and corrected Hartree–Fock functionals. Chem Phys Lett 364(3–4):409–419. doi:10.​1016/​S0009-2614(02)01345-3 CrossRef
    26.Cioslowski J, Pernal K (2001) Response properties and stability conditions in density matrix functional theory. J Chem Phys 115(13):5784–5790. doi:10.​1063/​1.​1383292 CrossRef
    27.Gritsenko O, Pernal K, Baerends E (2005) An improved density matrix functional by physically motivated repulsive corrections. J Chem Phys 122(20):204102. doi:10.​1063/​1.​1906203 CrossRef
    28.Goedecker S, Umrigar CJ (1998) Natural orbital functional for the many-electron problem. Phys Rev Lett 81(4):866–869. doi:10.​1103/​PhysRevLett.​81.​866 CrossRef
    29.Goedecker S, Umrigar CJ (2000) Natural orbital functional theory. In: Cioslowski J (ed) Many-electron densities and reduced density matrices. Kluwer, New York, p 165CrossRef
    30.Lathiotakis NN, Marques MAL (2008) Benchmark calculations for reduced density-matrix functional theory. J Chem Phys 128(18):184103. doi:10.​1063/​1.​2899328 CrossRef
    31.Csanyi G, Arias TA (2000) Tensor product expansions for correlation in quantum many-body systems. Phys Rev B 61(11):7348–7352. doi:10.​1103/​PhysRevB.​61.​7348 CrossRef
    32.Staroverov VN, Scuseria GE (2002) Optimization of density matrix functionals by the Hartree-Fock-Bogoliubov method. J Chem Phys 117(24):11107–11112. doi:10.​1063/​1.​1523060 CrossRef
    33.Kutzelnigg W, Mukherjee D (1999) Cumulant expansion of the reduced density matrices. J Chem Phys 110(6):2800–2809. doi:10.​1063/​1.​478189 CrossRef
    34.Kutzelnigg W (1963) Die losung des quantenmechanischen zwei-elektronenproblems durch unmittelbare bestimmung der naturlichen einelektronenfunktionen. I. Theorie. Theor Chim Acta 1(4):327–342. doi:10.​1007/​BF00528764 CrossRef
    35.Shull H, Löwdin PO (1956) Correlation splitting in helium-like ions. J Chem Phys 25(5):1035–1040. doi:10.​1063/​1.​1743093 CrossRef
    36.Cioslowski J, Pernal K (2006) Unoccupied natural orbitals in two-electron Coulombic systems. Chem Phys Lett 430(1–3):188–190. doi:10.​1016/​j.​cplett.​2006.​08.​011 CrossRef
    37.Sheng XW, Mentel LM, Gritsenko OV, Baerends EJ (2013) A natural orbital analysis of the long range behavior of chemical bonding and van der Waals interaction in singlet H2: the issue of zero natural orbital occupation numbers. J Chem Phys 138(16):164105. doi:10.​1063/​1.​4801431 CrossRef
    38.Giesbertz KJH, van Leeuwen R (2013) Long-range interactions and the sign of natural amplitudes in two-electron systems. J Chem Phys 139(10):104110. doi:10.​1063/​1.​4820418 CrossRef
    39.Cioslowski J, Pernal K (2000) The ground state of harmonium. J Chem Phys 113(19):8434–8443. doi:10.​1063/​1.​1318767 CrossRef
    40.Rohr DR, Pernal K, Gritsenko OV, Baerends EJ (2008) A density matrix functional with occupation number driven treatment of dynamical and nondynamical correlation. J Chem Phys 129(16):164105. doi:10.​1063/​1.​2998201 CrossRef
    41.Pernal K, Cioslowski J (2004) Phase dilemma in density matrix functional theory. J Chem Phys 120(13):5987–5992. doi:10.​1063/​1.​1651059 CrossRef
    42.Mentel LM, van Meer R, Gritsenko OV, Baerends EJ (2014) The density matrix functional approach to electron correlation: dynamic and nondynamic correlation along the full dissociation coordinate. J Chem Phys 140(21):214105. doi:10.​1063/​1.​4879776 CrossRef
    43.Piris M (2006) A new approach for the two-electron cumulant in natural orbital functional theory. Int J Quant Chem 106(5):1093–1104. doi:10.​1002/​qua.​20858 CrossRef
    44.Piris M, Lopez X, Ugalde JM (2007) Dispersion interactions within the Piris natural orbital functional theory: the helium dimer. J Chem Phys 126(21):214103. doi:10.​1063/​1.​2743019 CrossRef
    45.Piris M, Matxain JM, Lopez X, Ugalde JM (2010) Communications: accurate description of atoms and molecules by natural orbital functional theory. J Chem Phys 132(3):031103. doi:10.​1063/​1.​3298694 CrossRef
    46.Piris M, Matxain JM, Lopez X, Ugalde JM (2010) Communication: the role of the positivity N-representability conditions in natural orbital functional theory. J Chem Phys 133(11):111101. doi:10.​1063/​1.​3481578 CrossRef
    47.Piris M, Lopez X, Ruiperez F, Matxain JM, Ugalde JM (2011) A natural orbital functional for multiconfigurational states. J Chem Phys 134(16):164102. doi:10.​1063/​1.​3582792 CrossRef
    48.Piris M (2014) Interacting pairs in natural orbital functional theory. J Chem Phys 141:044107. doi:10.​1063/​1.​4890653 CrossRef
    49.Piris M, Ugalde JM (2014) Perspective on natural orbital functional theory. Int J Quant Chem 114(18, SI):1169–1175. doi:10.​1002/​qua.​24663 CrossRef
    50.Piris M (2013) A natural orbital functional based on an explicit approach of the two-electron cumulant. Int J Quant Chem 113(5, SI):620–630. doi:10.​1002/​qua.​24020 CrossRef
    51.Piris M, Matxain JM, Lopez X, Ugalde JM (2009) Spin conserving natural orbital functional theory. J Chem Phys 131(2):021102. doi:10.​1063/​1.​3180958 CrossRef
    52.Leiva P, Piris M (2006) Calculation of vertical ionization potentials with the Piris natural orbital functional. J Mol Struct (THEOCHEM) 770(1–3):45–49. doi:10.​1016/​j.​theochem.​2006.​05.​001 CrossRef
    53.Lopez X, Piris M, Matxain JM, Ugalde JM (2010) Performance of PNOF3 for reactivity studies: X[BO] and X[CN] isomerization reactions (X = H, Li) as a case study. Phys Chem Chem Phys 12(40):12931–12934. doi:10.​1039/​c003379k CrossRef
    54.Lopez X, Ruiperez F, Piris M, Matxain JM, Matito E, Ugalde JM (2012) Performance of PNOF5 natural orbital functional for radical formation reactions: hydrogen atom abstraction and C-C and O-O homolytic bond cleavage in selected molecules. J Chem Theory Comput 8(8):2646–2652. doi:10.​1021/​ct300414t CrossRef
    55.Ruiperez F, Piris M, Ugalde JM, Matxain JM (2013) The natural orbital functional theory of the bonding in Cr2, Mo2 and W2. Phys Chem Chem Phys 15(6):2055–2062. doi:10.​1039/​c2cp43559d CrossRef
    56.Matxain JM, Piris M, Ruiperez F, Lopez X, Ugalde JM (2011) Homolytic molecular dissociation in natural orbital functional theory. Phys Chem Chem Phys 13(45):20129–20135. doi:10.​1039/​c1cp21696a CrossRef
    57.Piris M (2013) Interpair electron correlation by second-order perturbative corrections to PNOF5. J Chem Phys 139(6):064111. doi:10.​1063/​1.​4817946 CrossRef
    58.Piris M, Ruiperez F, Matxain JM (2014) Assessment of the second-order perturbative corrections to PNOF5. Mol Phys 112(5–6, SI):1–8. doi:10.​1080/​00268976.​2013.​854933 CrossRef
    59.Szabados Á, Rolik Z, Tóth G, Surján PR (2005) Multiconfiguration perturbation theory: size consistency at second order. J Chem Phys 122(11):114104. doi:10.​1063/​1.​1862235 CrossRef
    60.Pernal K (2013) The equivalence of the Piris Natural Orbital Functional 5 (PNOF5) and the antisymmetrized product of strongly orthogonal geminal theory. Comput Theor Chem 1003(SI):127–129. doi:10.​1016/​j.​comptc.​2012.​08.​022 CrossRef
    61.Surján PR (1999) An introduction to the theory of geminals. In: Surján PR (ed) Correlation and localization, vol 203, Topics in current chemistry. Springer, Berlin/Heidelberg, pp 63–88CrossRef
    62.Rassolov V (2002) A geminal model chemistry. J Chem Phys 117(13):5978–5987. doi:10.​1063/​1.​1503773 CrossRef
    63.Rassolov VA, Xu F (2007) Geminal model chemistry. IV. Variational and size consistent pure spin states. J Chem Phys 127(4):044104. doi:10.​1063/​1.​2755738 CrossRef
    64.Hurley AC, Lennard-Jones J, Pople JA (1953) The molecular orbital theory of chemical valency. A theory of paired-electrons in polyatomic molecules. Proc R Soc Lond A Math Phys Sci 220(1143):446–455. doi:10.​1098/​rspa.​1953.​0198 CrossRef
    65.Kutzelnigg W (1964) Direct determination of natural orbitals and natural expansion coefficients of many-electron wavefunctions. I. Natural orbitals in geminal product approximation. J Chem Phys 40(12):3640–3647. doi:10.​1063/​1.​1725065 CrossRef
    66.Arai T (1960) Theorem on separability of electron pairs. J Chem Phys 33(1):95–98. doi:10.​1063/​1.​1731142 CrossRef
    67.Mehler EL, Reudenberg K, Silver DM (1970) Electron correlation and separated pair approximation in diatomic molecules. II. Lithium hydride and boron hydride. J Chem Phys 52(3):1181–1205. doi:10.​1063/​1.​1673115 CrossRef
    68.Matxain JM, Piris M, Uranga J, Lopez X, Merino G, Ugalde JM (2012) The nature of chemical bonds from PNOF5 calculations. Chemphyschem 13(9):2297–2303. doi:10.​1002/​cphc.​201200205 CrossRef
    69.Piris M, Matxain JM, Lopez X (2013) The intrapair electron correlation in natural orbital functional theory. J Chem Phys 139(23):234109. doi:10.​1063/​1.​4844075 CrossRef
    70.Cioslowski J, Pernal K (2002) Density matrix functional theory of weak intermolecular interactions. J Chem Phys 116(12):4802–4807. doi:10.​1063/​1.​1446028 CrossRef
    71.Cioslowski J, Ziesche P, Pernal K (2001) Description of a high-density homogeneous electron gas with the Yasuda density matrix functional. J Chem Phys 115(19):8725–8730. doi:10.​1063/​1.​1412604 CrossRef
    72.Cioslowski J, Pernal K (2002) Variational density matrix functional theory calculations with the lowest-order Yasuda functional. J Chem Phys 117(1):67–71. doi:10.​1063/​1.​1481384 CrossRef
    73.Cioslowski J, Buchowiecki M, Ziesche P (2003) Density matrix functional theory of four-electron systems. J Chem Phys 119(22):11570–11573. doi:10.​1063/​1.​1623741 CrossRef
    74.Kollmar C, Hess BA (2003) A new approach to density matrix functional theory. J Chem Phys 119(9):4655–4661. doi:10.​1063/​1.​1590635 CrossRef
    75.Kollmar C, Hess BA (2004) The structure of the second-order reduced density matrix in density matrix functional theory and its construction from formal criteria. J Chem Phys 120(7):3158–3171. doi:10.​1063/​1.​1634554 CrossRef
    76.Kollmar C (2004) The “JK-only” approximation in density matrix functional and wave function theory. J Chem Phys 121(23):11581–11586. doi:10.​1063/​1.​1819319 CrossRef
    77.Pernal K (2010) Long-range density-matrix-functional theory: application to a modified homogeneous electron gas. Phys Rev A 81(5):052511. doi:10.​1103/​PhysRevA.​81.​052511 CrossRef
    78.Rohr DR, Toulouse J, Pernal K (2010) Combining density-functional theory and density-matrix-functional theory. Phys Rev A 82(5):052502. doi:10.​1103/​PhysRevA.​82.​052502 CrossRef
    79.Stoll H, Savin A (1985) Density functionals for correlation energies of atoms and molecules. In: Dreizler R, da Providencia J (eds) Density functional methods in physics. Plenum, New York, pp 177–207CrossRef
    80.Toulouse J, Colonna F, Savin A (2004) Long-range-short-range separation of the electron–electron interaction in density-functional theory. Phys Rev A 70(6):062505. doi:10.​1103/​PhysRevA.​70.​062505 CrossRef
    81.Goll E, Werner HJ, Stoll H (2005) A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers. Phys Chem Chem Phys 7(23):3917–3923. doi:10.​1039/​b509242f CrossRef
    82.Lathiotakis NN, Helbig N, Gross EKU (2007) Performance of one-body reduced density-matrix functionals for the homogeneous electron gas. Phys Rev B 75(19):195120. doi:10.​1103/​PhysRevB.​75.​195120 CrossRef
    83.Cioslowski J, Pernal K (2000) Description of a homogeneous electron gas with simple functionals of the one-particle density matrix. Phys Rev A 61(3):034503CrossRef
    84.Sharma S, Dewhurst JK, Lathiotakis NN, Gross EKU (2008) Reduced density matrix functional for many-electron systems. Phys Rev B 78(20):201103. doi:10.​1103/​PhysRevB.​78.​201103 CrossRef
    85.Lathiotakis NN, Helbig N, Zacarias A, Gross EKU (2009) A functional of the one-body-reduced density matrix derived from the homogeneous electron gas: performance for finite systems. J Chem Phys 130(6):064109. doi:10.​1063/​1.​3073053 CrossRef
    86.Lathiotakis NN, Sharma S, Dewhurst JK, Eich FG, Marques MAL, Gross EKU (2009) Density-matrix-power functional: performance for finite systems and the homogeneous electron gas. Phys Rev A 79(4):040501. doi:10.​1103/​PhysRevA.​79.​040501 CrossRef
    87.Marques MAL, Lathiotakis NN (2008) Empirical functionals for reduced-density-matrix-functional theory. Phys Rev A 77(3):032509. doi:10.​1103/​PhysRevA.​77.​032509 CrossRef
    88.Cioslowski J, Ziesche P, Pernal K (2001) On the exactness of simple natural spin-orbital functionals for a high-density homogeneous electron gas. Phys Rev B 63(20):205105CrossRef
    89.Cioslowski J, Pernal K (1999) Constraints upon natural spin orbital functionals imposed by properties of a homogeneous electron gas. J Chem Phys 111(8):3396–3400. doi:10.​1063/​1.​479623 CrossRef
    90.Sharma S, Dewhurst JK, Shallcross S, Gross EKU (2013) Spectral density and metal-insulator phase transition in Mott insulators within reduced density matrix functional theory. Phys Rev Lett 110(11):116403. doi:10.​1103/​PhysRevLett.​110.​116403 CrossRef
    91.Pernal K, Baerends EJ (2006) Coupled-perturbed density-matrix functional theory equations. Application to static polarizabilities. J Chem Phys 124(1):14102. doi:10.​1063/​1.​2137325 CrossRef
    92.Lopez X, Piris M, Nakano M, Champagne B (2014) Natural orbital functional calculations of molecular polarizabilities and second hyperpolarizabilities. The hydrogen molecule as a test case. J Phys B At Mol Opt Phys 47(1):015101. doi:10.​1088/​0953-4075/​47/​1/​015101 CrossRef
    93.Leiva P, Piris M (2005) Assessment of a new approach for the two-electron cumulant in natural-orbital-functional theory. J Chem Phys 123(21):214102. doi:10.​1063/​1.​2135289 CrossRef
    94.Leiva P, Piris M (2005) Natural orbital functional theory: ionization potentials, equilibrium geometries and vibrational frequencies. J Mol Struct (THEOCHEM) 719(1–3):63–67. doi:10.​1016/​j.​theochem.​2005.​01.​023 CrossRef
    95.Zarkadoula EN, Sharma S, Dewhurst JK, Gross EKU, Lathiotakis NN (2012) Ionization potentials and electron affinities from reduced-density-matrix functional theory. Phys Rev A 85(3):032504. doi:10.​1103/​PhysRevA.​85.​032504 CrossRef
    96.Smith DW, Day OW (1975) Extension of Koopmans theorem. I. Derivation. J Chem Phys 62(1):113–114. doi:10.​1063/​1.​430253 CrossRef
    97.Day OW, Smith DW, Morrison RC (1975) Extension of Koopmans theorem. II. Accurate ionization energies from correlated wavefunctions for closed-shell atoms. J Chem Phys 62(1):115–119. doi:10.​1063/​1.​430254 CrossRef
    98.Morrell MM, Parr RG, Levy M (1975) Calculation of ionization-potentials from density matrices and natural functions, and long-range behavior of natural orbitals and electron-density. J Chem Phys 62(2):549–554. doi:10.​1063/​1.​430509 CrossRef
    99.Pernal K, Cioslowski J (2005) Ionization potentials from the extended Koopmans’ theorem applied to density matrix functional theory. Chem Phys Lett 412(1–3):71–75. doi:10.​1016/​j.​cplett.​2005.​06.​103 CrossRef
    100.Piris M, Matxain JM, Lopez X, Ugalde JM (2012) The extended Koopmans’ theorem: vertical ionization potentials from natural orbital functional theory. J Chem Phys 136(17):174116. doi:10.​1063/​1.​4709769 CrossRef
    101.Gritsenko OV, Braida B, Baerends EJ (2003) Physical interpretation and evaluation of the Kohn-Sham and Dyson components of the ε-I relations between the Kohn-Sham orbital energies and the ionization potentials. J Chem Phys 119(4):1937–1950. doi:10.​1063/​1.​1582839 CrossRef
    102.Chong DP, Gritsenko OV, Baerends EJ (2002) Interpretation of the Kohn-Sham orbital energies as approximate vertical ionization potentials. J Chem Phys 116(5):1760–1772. doi:10.​1063/​1.​1430255 CrossRef
    103.Pernal K (2005) Effective potential for natural spin orbitals. Phys Rev Lett 94(23):233002. doi:10.​1103/​PhysRevLett.​94.​233002 CrossRef
    104.Lathiotakis NN, Helbig N, Rubio A, Gidopoulos NI (2014) Local reduced-density-matrix-functional theory: incorporating static correlation effects in Kohn-Sham equations. Phys Rev A 90(3):032511. doi:10.​1103/​PhysRevA.​90.​032511 CrossRef
    105.Lathiotakis NN, Helbig N, Rubio A, Gidopoulos NI (2014) Quasi-particle energy spectra in local reduced density matrix functional theory. J Chem Phys 141(16):164120CrossRef
    106.Helbig N, Lathiotakis NN, Albrecht M, Gross EKU (2007) Discontinuity of the chemical potential in reduced-density-matrix-functional theory. EPL 77(6):67003. doi:10.​1209/​0295-5075/​77/​67003 CrossRef
    107.Helbig N, Lathiotakis NN, Gross EKU (2009) Discontinuity of the chemical potential in reduced-density-matrix-functional theory for open-shell systems. Phys Rev A 79(2):022504. doi:10.​1103/​PhysRevA.​79.​022504 CrossRef
    108.Lathiotakis NN, Sharma S, Helbig N, Dewhurst JK, Marques MAL, Eich F, Baldsiefen T, Zacarias A, Gross EKU (2010) Discontinuities of the chemical potential in reduced density matrix functional theory. Z Phys Chem 224(3–4, SI):467–480. doi:10.​1524/​zpch.​2010.​6118 CrossRef
    109.Cancès E, Pernal K (2008) Projected gradient algorithms for Hartree-Fock and density matrix functional theory calculations. J Chem Phys 128(13):134108. doi:10.​1063/​1.​2888550 CrossRef
    110.Giesbertz KJH, Baerends EJ (2010) Aufbau derived from a unified treatment of occupation numbers in Hartree-Fock, Kohn-Sham, and natural orbital theories with the Karush-Kuhn-Tucker conditions for the inequality constraints n i  ≤ 1 and n i  ≥ 0. J Comput Chem 132(19):194108. doi:10.​1063/​1.​3426319
    111.Piris M, Ugalde JM (2009) Iterative diagonalization for orbital optimization in natural orbital functional theory. J Comput Chem 30(13):2078–2086. doi:10.​1002/​jcc.​21225 CrossRef
    112.Requist R, Pankratov O (2008) Generalized Kohn-Sham system in one-matrix functional theory. Phys Rev B 77(23):235121. doi:10.​1103/​PhysRevB.​77.​235121 CrossRef
    113.Baldsiefen T, Gross EKU (2013) Minimization procedure in reduced density matrix functional theory by means of an effective noninteracting system. Comput Theor Chem 1003(SI):114–122. doi:10.​1016/​j.​comptc.​2012.​09.​001 CrossRef
    114.Talman JD, Shadwick WF (1976) Optimized effective atomic central potential. Phys Rev A 14(1):36–40. doi:10.​1103/​PhysRevA.​14.​36 CrossRef
    115.Kümmel S, Kronik L (2008) Orbital-dependent density functionals: theory and applications. Rev Mod Phys 80(1):3–60. doi:10.​1103/​RevModPhys.​80.​3 CrossRef
    116.Gidopoulos NI, Lathiotakis NN (2012) Nonanalyticity of the optimized effective potential with finite basis sets. Phys Rev A 85(5):046502. doi:10.​1103/​PhysRevA.​85.​052508 CrossRef
    117.Giesbertz KJH (2010) Time-dependent one-body reduced density matrix functional theory; adiabatic approximations and beyond. Ph.D. thesis, Vrije Universiteit, Amsterdam
    118.Appel H (2007) Time-dependent quantum many-body systems: linear response, electronic transport and reduced density matrices. Ph.D. thesis, Freie Universität, Berlin
    119.Pernal K, Gritsenko O, Baerends EJ (2007) Time-dependent density-matrix-functional theory. Phys Rev A 75(1):012506. doi:10.​1103/​PhysRevA.​75.​012506 CrossRef
    120.Pernal K, Cioslowski J (2007) Frequency-dependent response properties and excitation energies from one-electron density matrix functionals. Phys Chem Chem Phys 9(45):5956. doi:10.​1039/​b704797e CrossRef
    121.Pernal K, Giesbertz K, Gritsenko O, Baerends EJ (2007) Adiabatic approximation of time-dependent density matrix functional response theory. J Chem Phys 127:214101. doi:10.​1063/​1.​2800016 CrossRef
    122.Tozer DJ, Amos RD, Handy NC, Roor BO, Serrano-Andrés L (1999) Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds? Mol Phys 97(7):859–868CrossRef
    123.Dreuw A, Weisman JL, Head-Gordon M (2003) Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J Chem Phys 119(6):2943. doi:10.​1063/​1.​1590951 CrossRef
    124.Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51CrossRef
    125.Gritsenko O, Baerends EJ (2004) Asymptotic correction of the exchange-correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations. J Chem Phys 121(2):655CrossRef
    126.Neugebauer J, Gritsenko O, Baerends EJ (2006) Assessment of a simple correction for the long-range charge-transfer problem in time-dependent density-functional theory. J Chem Phys 124(21):214102CrossRef
    127.Gritsenko O, van Gisbergen SJA, Görling A, Baerends EJ (2000) Excitation energies of dissociating H2: a problematic case for the adiabatic approximation of time-dependent density functional theory. J Chem Phys 113(19):8478CrossRef
    128.Giesbertz KJH, Baerends EJ (2008) Failure of time-dependent density functional theory for excited state surfaces in case of homolytic bond dissociation. Chem Phys Lett 461:338. doi:10.​1016/​j.​cplett.​2008.​07.​018 CrossRef
    129.Maitra NT, Zhang F, Cave RJ, Burke K (2004) Double excitations within time-dependent density functional theory linear response. J Chem Phys 120(13):5932CrossRef
    130.Neugebauer J, Baerends E (2004) Vibronic coupling and double excitations in linear response time-dependent density functional calculations: dipole allowed states of N2. J Chem Phys 121(13):6155. doi:10.​1063/​1.​1785775 CrossRef
    131.Yvon J (1935) Theorie statistique des fluides et l’equation et l’equation d’etat (French). In: Actes Sientifique et Industrie, vol. 203. Hermann, Paris
    132.Bogoliubov NN (1946) Kinetic equations. J Phys USSR 10(3):265 (in English)
    133.Bogoliubov NN (1946) Kinetic equations. J Exp Theor Phys 16(8):691 (in Russian)
    134.Kirkwood JG (1946) The statistical mechanical theory of transport processes I. General theory. J Chem Phys 14(3):180CrossRef
    135.Born M, Green HS (1946) A general kinetic theory of liquids. I. The molecular distribution functions. Proc R Soc Med 188(1012):10–18CrossRef
    136.Kirkwood JG (1947) The statistical mechanical theory of transport processes II. Transport in gases. J Chem Phys 15(1):72CrossRef
    137.Bogoliubov NN, Gurov KP (1947) Kinetic equations in quantum mechanics (rus.). J Exp Theor Phys 17(7):614
    138.Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52(12):997. doi:10.​1103/​PhysRevLett.​52.​997 CrossRef
    139.Ruggenthaler M, van Leeuwen R (2011) Global fixed-point proof of time-dependent density-functional theory. Europhys Lett 95(1):13001. doi:10.​1209/​0295-5075/​95/​13001 CrossRef
    140.Ruggenthaler M, Giesbertz KJH, Penz M, van Leeuwen R (2012) Density-potential mappings in quantum dynamics. Phys Rev A 85(5):052504. doi:10.​1103/​PhysRevA.​85.​052504 CrossRef
    141.Giesbertz KJH, Baerends EJ, Gritsenko OV (2008) Charge transfer, double and bond
    eaking excitations with time-dependent density matrix functional theory. Phys Rev Lett 101:033004. doi:10.​1103/​PhysRevLett.​101.​033004 CrossRef
    142.Giesbertz KJH, Pernal K, Gritsenko OV, Baerends EJ (2009) Excitation energies with time-dependent density matrix functional theory: singlet two-electron systems. J Chem Phys 130(11):114104. doi:10.​1063/​1.​3079821 CrossRef
    143.Peuckert V (1978) A new approximation method for electron systems. J Phys C 11(24):4945CrossRef
    144.Giesbertz KJH, Gritsenko OV, Baerends EJ (2010) Response calculations with an independent particle system with an exact one-particle density matrix. Phys Rev Lett 105(1):013002. doi:10.​1103/​PhysRevLett.​105.​013002 CrossRef
    145.Giesbertz KJH, Gritsenko OV, Baerends EJ (2010) The adiabatic approximation in time-dependent density matrix functional theory: response properties from dynamics of phase-including natural orbitals. J Chem Phys 133(17):174119. doi:10.​1063/​1.​3499601 CrossRef
    146.Requist R, Pankratov O (2011) Time-dependent occupation numbers in reduced-density-matrix-functional theory: application to an interacting Landau–Zener model. Phys Rev A 83(5):052510. doi:10.​1103/​PhysRevA.​83.​052510 CrossRef
    147.Giesbertz KJH, Gritsenko OV, Baerends EJ (2014) Response calculations based on an independent particle system with the exact one-particle density matrix: polarizabilities. J Chem Phys 140(18):18A517. doi:10.​1063/​1.​4867000 CrossRef
    148.Giesbertz KJH, Gritsenko OV, Baerends EJ (2012) Time-dependent reduced density matrix functional theory. In: Marques MAL, Maitra N, Nogueira F, Gross EKU, Rubio A (eds) Fundamentals of time-dependent density functional theory, vol 837, Lecture notes in physics. Springer, Berlin, pp 485–498. doi:10.​1007/​978-3-642-23518-4 CrossRef
    149.Requist R, Pankratov O (2010) Adiabatic approximation in time-dependent reduced-density-matrix functional theory. Phys Rev A 81(4):042519. doi:10.​1103/​PhysRevA.​81.​042519 CrossRef
    150.Lehmann H (1954) Über Eigenschaften von Ausbreitungsfunktionen und Renormierungskonstanten quantisierter Felder. Nuovo Cimento 11(4):342CrossRef
    151.Requist R (2012) Hamiltonian formulation of nonequilibrium quantum dynamics: geometric structure of the Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy. Phys Rev A 86(2):022117. doi:10.​1103/​PhysRevA.​86.​02211 CrossRef
    152.Kramer P, Saraceno M (1980) Geometry of the time-dependent variational principle in quantum mechanics. In: Group theoretical methods in physics. Lecture notes in physics, vol 135. Springer, Berlin, pp 112–121
    153.Vignale G (2008) Real-time resolution of the causality paradox of time-dependent density-functional theory. Phys Rev A 77:062511. doi:10.​1103/​PhysRevA.​77.​062511 CrossRef
    154.Gross EKU, Dobson JF, Petersilka M (1996) Density functional theory of time-dependent phenomena. In: Nalewajsk RF (ed) Density functional theory II, vol 181, Topics in current chemistry. Springer, Berlin, pp 81–172. doi:10.​1007/​BFb0016643 CrossRef
    155.Rapp J, Brics M, Bauer D (2014) Equations of motion for natural orbitals of strongly driven two-electron systems. Phys Rev A 90(1):012518. doi:10.​1103/​PhysRevA.​90.​012518 CrossRef
    156.Giesbertz KJH, Gritsenko OV, Baerends EJ (2012) Response calculations based on an independent particle system with the exact one-particle density matrix: excitation energies. J Chem Phys 136:094104. doi:10.​1063/​1.​3687344 CrossRef
    157.van Meer R, Gritsenko OV, Giesbertz KJH, Baerends EJ (2013) Oscillator strengths of electronic excitations with response theory using phase including natural orbital functionals. J Chem Phys 138(9):094114. doi:10.​1063/​1.​4793740 CrossRef
    158.Brics M, Bauer D (2013) Time-dependent renormalized natural orbital theory applied to the two-electron spin-singlet case: ground state, linear response, and autoionization. Phys Rev A 88(5):052514. doi:10.​1103/​PhysRevA.​88.​052514 CrossRef
    159.de Morisson Faria CF, Liu X (2011) Electron–electron correlation in strong laser fields. J Opt Phys 58(13):1076. doi:10.​1080/​09500340.​2010.​543958
    160.Becker W, Liu X, Ho PJ, Eberly JH (2012) Theories of photoelectron correlation in laser-driven multiple atomic ionization. Rev Mod Phys 84(3):1011. doi:10.​1103/​RevModPhys.​84.​1011 CrossRef
    161.Lappas DG, van Leeuwen R (1998) Electron correlation effects in the double ionization of He. J Phys B 31(6):L249. doi:10.​1088/​0953-4075/​31/​6/​001 CrossRef
    162.Brics M, Rapp J, Bauer D (2014) Nonsequential double ionization with time-dependent renormalized-natural-orbital theory. Phys Rev A 90(5):053418. doi:10.​1103/​PhysRevA.​90.​053418 CrossRef
    163.van Meer R, Gritsenko OV, Baerends EJ (2014) Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems. J Chem Phys 140(2):024101. doi:10.​1063/​1.​4852195 CrossRef
    164.Chatterjee K, Pernal K (2012) Excitation energies from extended random phase approximation employed with approximate one- and two-electron reduced density matrices. J Chem Phys 137(20):204109. doi:10.​1063/​1.​4766934 CrossRef
    165.Pernal K, Chatterjee K, Kowalski PH (2014) How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches. J Chem Phys 140(1):014101. doi:10.​1063/​1.​4855275 CrossRef
    166.Rowe DJ (1968) Equations-of-motion method and the extended shell model. Rev Mod Phys 40(1):153–166. doi:10.​1103/​RevModPhys.​40.​153 CrossRef
    167.Lathiotakis NN, Helbig N, Gross EKU (2005) Open shells in reduced-density-matrix-functional theory. Phys Rev A 72(3):030501. doi:10.​1103/​PhysRevA.​72.​030501 CrossRef
    168.Lathiotakis NN, Gidopoulos NI, Helbig N (2010) Size consistency of explicit functionals of the natural orbitals in reduced density matrix functional theory. J Chem Phys 132(8):084105. doi:10.​1063/​1.​3324699 CrossRef
  • 作者单位:Katarzyna Pernal (20)
    Klaas J. H. Giesbertz (21)

    20. Institute of Physics, ul. Wolczanska 219, 90-924, Lodz, Poland
    21. Theoretical Chemistry, VU University, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
  • 丛书名:Density-Functional Methods for Excited States
  • ISBN:978-3-319-22081-9
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Organic Chemistry
    Inorganic Chemistry
    Theoretical and Computational Chemistry
    Medicinal Chemistry
    Biochemistry
    Organometallic Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-5049
文摘
Recent advances in reduced density matrix functional theory (RDMFT) and linear response time-dependent reduced density matrix functional theory (TD-RDMFT) are reviewed. In particular, we present various approaches to develop approximate density matrix functionals which have been employed in RDMFT. We discuss the properties and performance of most available density matrix functionals. Progress in the development of functionals has been paralleled by formulation of novel RDMFT-based methods for predicting properties of molecular systems and solids. We give an overview of these methods. The time-dependent extension, TD-RDMFT, is a relatively new theory still awaiting practical and generally useful functionals which would work within the adiabatic approximation. In this chapter we concentrate on the formulation of TD-RDMFT response equations and various adiabatic approximations. None of the adiabatic approximations is fully satisfactory, so we also discuss a phase-dependent extension to TD-RDMFT employing the concept of phase-including-natural-spinorbitals (PINOs). We focus on applications of the linear response formulations to two-electron systems, for which the (almost) exact functional is known.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700