Genome-wide analysis of Water-stress-responsive microRNA expression profile in tobacco roots
详细信息    查看全文
  • 作者:Fuqiang Yin (1) (2)
    Jian Gao (1)
    Ming Liu (2)
    Cheng Qin (1) (3)
    Wenyou Zhang (2)
    Aiguo Yang (4)
    Mingzhong Xia (2)
    Zhiming Zhang (1)
    Yaou Shen (1)
    Haijian Lin (1)
    Chenggang Luo (4)
    Guangtang Pan (1)
  • 关键词:MicroRNA expression profile ; Tobacco ; PEG treatment ; Q ; PCR
  • 刊名:Functional & Integrative Genomics
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:14
  • 期:2
  • 页码:319-332
  • 全文大小:
  • 参考文献:1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403-10 CrossRef
    2. Andrianov V, Borisjuk N, Pogrebnyak N, Brinker A, Dixon J, Spitsin S, Flynn J, Matyszczuk P, Andryszak K, Laurelli M (2009) Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol J 8(3):277-87
    3. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell Online 15(11):2730-741 CrossRef
    4. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24(1):23-8 CrossRef
    5. Bazzini A, Hopp H, Beachy R, Asurmendi S (2007) Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. Proc Natl Acad Sci 104(29):12157-2162 CrossRef
    6. Billoud B, De Paepe R, Baulcombe D, Boccara M (2005) Identification of new small non-coding RNAs from tobacco and Arabidopsis. Biochimie 87(9):905-10 CrossRef
    7. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G (2004) GO: TermFinder—open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20(18):3710-715 CrossRef
    8. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science Signalling 303(5666):2022
    9. Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet 39(12):1517-521 CrossRef
    10. Chuck G, Meeley R, Hake S (2008) Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development 135(18):3013-019 CrossRef
    11. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2(2):e219 CrossRef
    12. Frazier TP, Sun G, Burklew CE, Zhang B (2011) Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol 49(2):159-65 CrossRef
    13. Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15(22):2038-043 CrossRef
    14. Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) osa-MIR393: a salinity-and alkaline stress-related microRNA gene. Mol Biol Rep 38(1):237-42 CrossRef
    15. Glazebrook J (2001) Genes controlling expression of defense responses in Arabidopsis-001 status. Curr Opin Plant Biol 4(4):301-08 CrossRef
    16. Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10(5):453-60 CrossRef
    17. Guo H, Kan Y, Liu W (2011) Differential expression of miRNAs in response to topping in flue-cured tobacco (Nicotiana tabacum) roots. PLoS One 6(12):e28565 CrossRef
    18. Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog 27(2):297-06 CrossRef
    19. Itaya A, Bundschuh R, Archual AJ, Joung JG, Fei Z, Dai X, Zhao PX, Tang Y, Nelson RS, Ding B (2008) Small RNAs in tomato fruit and leaf development. Biochim Biophys Acta (BBA)-Gene Regul Mech 1779(2):99-07 CrossRef
    20. Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP (2007) F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143(4):1467-483 CrossRef
    21. Jia H, Liao M, Verbelen JP, Vissenberg K (2007) Direct creation of marker-free tobacco plants from agroinfiltrated leaf discs. Plant Cell Rep 26(11):1961-965 CrossRef
    22. Jia X, Wang WX, Ren L, Chen QJ, Mendu V, Willcut B, Dinkins R, Tang X, Tang G (2009) Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol 71(1):51-9 CrossRef
    23. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787-99 CrossRef
    24. Jube S, Borthakur D (2007) Expression of bacterial genes in transgenic tobacco: methods, applications and future prospects. Electron J Biotechnol 10(3):452-67
    25. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(suppl 1):D354–D357 CrossRef
    26. Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4(2):205-17 CrossRef
    27. Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6(6):262-67 CrossRef
    28. Lang Q, Jin CZ, Lai L, Feng J, Chen S, Chen J (2011) Tobacco microRNAs prediction and their expression infected with Cucumber mosaic virus and Potato virus X. Mol Biol Rep 38(3):1523-531 CrossRef
    29. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24(5):713-14 CrossRef
    30. Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52(1):133-46 CrossRef
    31. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. Rna 14(5):836-43 CrossRef
    32. Lu C, Meyers BC, Green PJ (2007a) Construction of small RNA cDNA libraries for deep sequencing. Methods 43(2):110-17 CrossRef
    33. Lu S, Sun YH, Amerson H, Chiang VL (2007b) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. The Plant Journal 51(6):1077-098 CrossRef
    34. Lu C, Jeong DH, Kulkarni K, Pillay M, Nobuta K, German R, Thatcher SR, Maher C, Zhang L, Ware D (2008) Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci 105(12):4951-956 CrossRef
    35. Martin RC, Liu PP, Goloviznina NA, Nonogaki H (2010) microRNA, seeds, and Darwin?: Diverse function of miRNA in seed biology and plant responses to stress. J Exp Bot 61(9):2229-234 CrossRef
    36. Matts J, Jagadeeswaran G, Roe BA, Sunkar R (2010) Identification of microRNAs and their targets in switchgrass, a model biofuel plant species. J Plant Physiol 167(11):896-04 CrossRef
    37. Mlotshwa S, Yang Z, Kim YJ, Chen X (2006) Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana. Plant Mol Biol 61(4):781-93 CrossRef
    38. Nishimura N, Kitahata N, Seki M, Narusaka Y, Narusaka M, Kuromori T, Asami T, Shinozaki K, Hirayama T (2005) Analysis of ABA hypersensitive germination2 revealed the pivotal functions of PARN in stress response in Arabidopsis. Plant J 44(6):972-84 CrossRef
    39. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20(24):3407-425 CrossRef
    40. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4):513-20 CrossRef
    41. Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion M (2010) The role of tobacco aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol 152(1):245-54 CrossRef
    42. Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H (2006) Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s C T difference-formula. J Mol Med 84(11):901-10 CrossRef
    43. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221-27 CrossRef
    44. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6(5):410-17 CrossRef
    45. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Sci Signal 16(8):2001
    46. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. The Plant Cell Online 18(8):2051-065 CrossRef
    47. Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8(1):25 CrossRef
    48. Tagami Y, Inaba N, Kutsuna N, Kurihara Y, Watanabe Y (2007) Specific enrichment of miRNAs in Arabidopsis thaliana infected with Tobacco mosaic virus. DNA Res 14(5):227-33 CrossRef
    49. Tang S, Wang Y, Li Z, Gui Y, Xiao B, Xie J, Zhu QH, Fan L (2012) Identification of wounding and topping responsive small RNAs in tobacco (Nicotiana tabacum). BMC Plant Biol 12(1):28 CrossRef
    50. Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. The Plant Cell Online 16(2):533-43 CrossRef
    51. Trindade I, Capit?o C, Dalmay T, Fevereiro MP, Santos DM (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231(3):705-16 CrossRef
    52. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. The Plant Cell Online 9(11):1963-971 CrossRef
    53. Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138(4):750-59 CrossRef
    54. Xin M, Wang Y, Yao Y, Song N, Hu Z, Qin D, Xie C, Peng H, Ni Z, Sun Q (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11(1):61 CrossRef
    55. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34(suppl 2):W293–W297 CrossRef
    56. Yin Z, Li C, Han X, Shen F (2008) Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 414(1):60-6 CrossRef
    57. Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10(1):449 CrossRef
    58. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247-73 CrossRef
  • 作者单位:Fuqiang Yin (1) (2)
    Jian Gao (1)
    Ming Liu (2)
    Cheng Qin (1) (3)
    Wenyou Zhang (2)
    Aiguo Yang (4)
    Mingzhong Xia (2)
    Zhiming Zhang (1)
    Yaou Shen (1)
    Haijian Lin (1)
    Chenggang Luo (4)
    Guangtang Pan (1)

    1. Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, China
    2. School of Agricultural Sciences, Xichang College, Xichang, 615000, China
    3. Zunyi Academy of Agricultural Sciences, Zunyi, 563102, China
    4. Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
  • ISSN:1438-7948
文摘
MicroRNAs (miRNAs) play a pivotal role in post-transcriptional regulation of gene expression in plants. In this study, we investigate miRNAs in an agronomically important common tobacco in China, named Honghua Dajinyuan (a drought-tolerant cultivar). Here, we report a comprehensive analysis of miRNA expression profiles in mock-treat grown (CK) and 20?% polyethylene glycol-grown (PEG-grown) tobacco roots using a high-throughput sequencing approach. A total of 656 unique miRNAs representing 53 miRNA families were identified in the two libraries, of which 286 unique miRNAs representing 162 microRNAs were differentially expressed. In addition, nine differentially expressed microRNAs selected from different expressed miRNA family with high abundance were subjected to further analysis and validated by quantitative real-time PCR (Q-PCR). In addition, the expression pattern of these identified candidate conserved miRNA and target genes of three identified miRNA (nta-miR172b, nta-miR156i, and nta-miR160a) were also validated by Q-PCR. Gene ontology (GO) enrichment analysis suggests that the putative target genes of these differentially expressed miRNAs are involved in metabolic process and response to stimulus. In particular, 25 target genes are involved in regulating plant hormone signal transduction and metabolism, indicating that these association microRNAs may play important regulatory roles in responding to PEG resistance. Moreover, this study adds a significant number of novel miRNAs to the tobacco miRNome.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700