Quantitative analysis of metallic artifacts caused by dental metals: comparison of cone-beam and multi-detector row CT scanners
详细信息    查看全文
  • 作者:Jira Chindasombatjaroen (1) (2)
    Naoya Kakimoto (1)
    Shumei Murakami (1)
    Yoshinobu Maeda (3)
    Souhei Furukawa (1)
  • 关键词:Artifact ; Metals ; Cone ; beam computed tomography ; Computed tomography
  • 刊名:Oral Radiology
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:27
  • 期:2
  • 页码:114-120
  • 全文大小:512KB
  • 参考文献:1. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol. 1998;8:1558-4. CrossRef
    2. Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K. Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol. 1999;28:245-. CrossRef
    3. Robertson DD, Weiss PJ, Fishman EK, Magid D, Walker PS. Evaluation of CT techniques for reducing artifacts in the presence of metallic orthopedic implants. J Comput Assist Tomogr. 1988;12:236-1. CrossRef
    4. Naranjo V, Lloréns R, Alca?iz M, López-Mir F. Metal artifact reduction in dental CT images using polar mathematical morphology. Comput Methods Programs Biomed. 2011;102:64-4.
    5. Dong J, Kondo A, Abe K, Hayakawa Y. Successive iterative restoration applied to streak artifact reduction in X-ray CT image of dento-alveolar region. Int J Comput Assist Radiol Surg. 2011. doi:10.1007/s11548-010-0544-2 .
    6. Zhang Y, Zhang L, Zhu XR, Lee AK, Chambers M, Dong L. Reducing metal artifacts in cone-beam CT images by preprocessing projection data. Int J Radiat Oncol Biol Phys. 2007;67:924-2. CrossRef
    7. Tohnak S, Mehnert AJ, Mahoney M, Crozier S. Dental CT metal artefact reduction based on sequential substitution. Dentomaxillofac Radiol. 2011;40:184-0. CrossRef
    8. Kondo A, Hayakawa Y, Dong J, Honda A. Iterative correction applied to streak artifact reduction in an X-ray computed tomography image of the dento-alveolar region. Oral Radiol. 2010;26:61-. CrossRef
    9. van der Schaaf I, van Leeuwen M, Vlassenbroek A, Velthuis B. Minimizing clip artifacts in multi CT angiography of clipped patients. AJNR Am J Neuroradiol. 2006;27:60-.
    10. Barrett JF, Keat N. Artifact in CT: recognition and avoidance. Radiographics. 2004;24:1679-1. CrossRef
    11. Moon SG, Hong SH, Choi JY, Jun WS, Kang HG, Kim HS, et al. Metal artifact reduction by the alteration of technical factors in multidetector computed tomography: a 3 dimensional quantitative assessment. J Comput Assist Tomogr. 2008;32:630-. CrossRef
    12. Fiala TG, Novelline RA, Yaremchuk MJ. Comparison of CT imaging artifacts from craniomaxillofacial internal fixation devices. Plast Reconstr Surg. 1993;92:1227-2.
    13. Sullivan PK, Smith JF, Rozzelle AA. Cranio-orbital reconstruction: safety and image quality of metallic implants on CT and MRI scanning. Plast Reconstr Surg. 1994;94:589-6. CrossRef
    14. Lee IS, Kim HJ, Choi BK, et al. A pragmatic protocol for reduction in the metal artifact and radiation dose in multislice computed tomography of the spine: cadaveric evaluation after cervical pedicle screw placement. J Comput Assist Tomogr. 2007;31:635-1. CrossRef
    15. Dalal T, Kalra MK, Rizzo SM, Schmidt B, Suess C, Flohr T, et al. Metallic prosthesis: technique to avoid increase in CT radiation dose with automatic tube current modulation in a phantom and patients. Radiology. 2005;236:671-. CrossRef
    16. Draenert FG, Coppenrath E, Herzog P, Müller S, Mueller-Lisse UG. Beam hardening artefacts occur in dental implant scans with the NewTom cone beam CT but not with the dental 4-row multidetector CT. Dentomaxillofac Radiol. 2007;36:198-03. CrossRef
    17. Sanders MA, Hoyjberg C, Chu CB, Leggitt VL, Kim JS. Common orthodontic appliances cause artifacts that degrade the diagnostic quality of CBCT images. J Calif Dent Assoc. 2007;35:850-.
    18. Schulze RK, Berndt D, d’Hoedt B. On cone-beam computed tomography artifacts induced by titanium implants. Clin Oral Implants Res. 2010;21:100-. CrossRef
    19. Holberg C, Steinh?user S, Geis P, Rudzki-Janson I. Cone-beam computed tomography in orthodontics: benefits and limitations. J Orofac Orthop. 2005;66:434-4. CrossRef
    20. Mischkowski RA, Scherer P, Ritter L, Neugebauer J, Keeve E, Z?ller JE. Diagnostic quality of multiplanar reformations obtained with a newly developed cone beam device for maxillofacial imaging. Dentomaxillofac Radiol. 2008;37:1-. CrossRef
    21. Jonson R. Mass attenuation coefficients, quantities and units for use in bone mineral determinations. Osteoporos Int. 1993;3:103-. CrossRef
    22. Whitehouse RW. Computed tomography (CT) and CT arthrography. In: Davies AM, Cassar-Pullicino VN, editors. Imaging of the knee: techniques and applications. Heidelberg: Springer-Verlag; 2002.
    23. Coelho PG, Granato R, Marin C, Bonfante EA, Janal MN, Suzuki M. Biomechanical and bone histomorphologic evaluation of four surfaces on plateau root form implants: an experimental study in dogs. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:e39-5. CrossRef
    24. Ferracane JL. Materials in dentistry principles and applications. 2nd ed. Baltimore: Lippincott Williams and Wilkins; 2001. p. 284-.
    25. Watanabe I, Watanabe E, Atsuta M, Okabe T. Tensile strength of soldered gold alloy joints. J Prosthet Dent. 1997;78:260-. CrossRef
    26. Uysal T, Sari Z. Intermaxillary tooth size discrepancy and mesiodistal crown dimensions for a Turkish population. Am J Orthod Dentofacial Orthop. 2005;128:226-0. CrossRef
    27. Haramati N, Staron RB, Mazel-Sperling K, Freeman K, Nickoloff EL, Barax C, et al. CT scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph.?1994;18:429-4. CrossRef
  • 作者单位:Jira Chindasombatjaroen (1) (2)
    Naoya Kakimoto (1)
    Shumei Murakami (1)
    Yoshinobu Maeda (3)
    Souhei Furukawa (1)

    1. Department of Oral and Maxillofacial Radiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
    2. Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
    3. Department of Prosthodontics and Oral Rehabilitation, Osaka University Graduate School of Dentistry, Osaka, Japan
文摘
Objectives To quantitatively compare the streak artifacts produced by dental metals in a cone-beam computed tomography (CBCT) device and a multi-detector row computed tomography (MDCT) scanner in relation to metal types and imaging parameters. Methods Cubes of aluminum, titanium, cobalt–chromium alloy, and type IV gold alloy were scanned with CBCT and MDCT scanners at tube voltages of 80 and 100 peak?kV (kVp), and currents of 100 and 170?mAs by MDCT, and 102 and 170?mAs by CBCT. Artifact areas were quantified using ImageJ software. Results Artifact areas for the same metals and imaging parameters were smaller with CBCT than with MDCT under most conditions. Type IV gold alloy caused the largest artifact areas, followed by cobalt–chromium alloy, titanium, and aluminum, respectively. Higher tube voltage was associated with smaller artifact areas under most conditions, whereas increasing tube current had no consistent effect on artifact area using either CT device. Conclusions CBCT was associated with smaller artifact areas than MDCT for the same parameters. Type IV gold alloy produced the largest artifact areas among the tested metals, but metallic artifacts could be reduced by increasing the tube voltage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700