Optical mapping in plant comparative genomics
详细信息    查看全文
  • 作者:Haibao Tang (1) (2)
    Eric Lyons (2)
    Christopher D Town (3)

    1. Center for Genomics and Biotechnology
    ; Fujian Agriculture and Forestry University ; Fuzhou ; 350002 ; Fujian ; People鈥檚 Republic of China
    2. School of Plant Sciences
    ; iPlant Collaborative ; University of Arizona ; Tucson ; AZ ; 85721 ; USA
    3. J. Craig Venter Institute
    ; Rockville ; MD ; 20850 ; USA
  • 关键词:Optical mapping ; Comparative genomics ; De novo assembly ; Structural variation
  • 刊名:GigaScience
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:4
  • 期:1
  • 全文大小:829 KB
  • 参考文献:1. Schwartz DC, Li X, Hernandez LI, Ramnarain SP, Huff EJ, Wang YK. Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science. 1993;262:110鈥?. CrossRef
    2. Lam ET, Hastie A, Lin C, Ehrlich D, Das SK, Austin MD, et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat Biotechnol. 2012;30:771鈥?. CrossRef
    3. OpGen [http://www.opgen.com/]
    4. BioNanoGenomics [http://www.bionanogenomics.com/]
    5. Hall BG, Kirkup BC, Riley MC, Barlow M. Clustering acinetobacter strains by optical mapping. Genome Biol Evol. 2013;5:1176鈥?4. CrossRef
    6. Chamala S, Chanderbali AS, Der JP, Lan T, Walts B, Albert VA, et al. Assembly and validation of the genome of the nonmodel basal angiosperm Amborella. Science. 2013;342:1516鈥?. CrossRef
    7. Teague B, Waterman MS, Goldstein S, Potamousis K, Zhou S, Reslewic S, et al. High-resolution human genome structure by single-molecule analysis. Proc Natl Acad Sci U S A. 2010;107:10848鈥?3. CrossRef
    8. Nagarajan N, Read TD, Pop M. Scaffolding and validation of bacterial genome assemblies using optical restriction maps. Bioinformatics. 2008;24:1229鈥?5. CrossRef
    9. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet. 2006;7:85鈥?7. CrossRef
    10. Schatz MC, Witkowski J, McCombie WR. Current challenges in de novo plant genome sequencing and assembly. Genome Biol. 2012;13:243. CrossRef
    11. Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, et al. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics. 2014;15:312. CrossRef
    12. Zhou S, Wei F, Nguyen J, Bechner M, Potamousis K, Goldstein S, et al. A single molecule scaffold for the maize genome. PLoS Genet. 2009;5:e1000711. CrossRef
    13. Lin HC, Goldstein S, Mendelowitz L, Zhou S, Wetzel J, Schwartz DC, et al. AGORA: assembly guided by optical restriction alignment. BMC Bioinformatics. 2012;13:189. CrossRef
    14. Valouev A, Schwartz DC, Zhou S, Waterman MS. An algorithm for assembly of ordered restriction maps from single DNA molecules. Proc Natl Acad Sci U S A. 2006;103:15770鈥?. CrossRef
    15. Muggli M, Puglisi S, Boucher C. Efficient indexed alignment of contigs to optical maps. In: Brown D, Morgenstern B, editors. Algorithms in Bioinformatics, vol. 8701. Berlin-Heidelberg: Springer International Publishing; 2014. p. 68鈥?1. CrossRef
    16. Sarkar D, Goldstein S, Schwartz DC, Newton MA. Statistical significance of optical map alignments. J Comput Biol. 2012;19:478鈥?2. CrossRef
    17. Zhou S, Bechner MC, Place M, Churas CP, Pape L, Leong SA, et al. Validation of rice genome sequence by optical mapping. BMC Genomics. 2007;8:278. CrossRef
    18. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (N Y). 2013;6:4.
    19. Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, et al. The genome of Prunus mume. Nat Commun. 2012;3:1318. CrossRef
    20. Shearer LA, Anderson LK, de Jong H, Smit S, Goicoechea JL, Roe BA, et al. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3 (Bethesda). 2014;4:1395鈥?05. CrossRef
    21. Hastie AR, Dong L, Smith A, Finklestein J, Lam ET, Huo N, et al. Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome. PLoS One. 2013;8:e55864. CrossRef
    22. Young ND, Debelle F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature. 2011;480:520鈥?. CrossRef
    23. Long Q, Rabanal FA, Meng D, Huber CD, Farlow A, Platzer A, et al. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat Genet. 2013;45:884鈥?0. CrossRef
    24. Zhang QJ, Zhu T, Xia EH, Shi C, Liu YL, Zhang Y, et al. Rapid diversification of five Oryza AA genomes associated with rice adaptation. Proc Natl Acad Sci U S A. 2014;111:E4954鈥?2. CrossRef
    25. Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science. 2008;319:1527鈥?0. CrossRef
    26. Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, et al. Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet. 2012;44:803鈥?. CrossRef
    27. Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, et al. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science. 2014;345:950鈥?. CrossRef
  • 刊物主题:Bioinformatics; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Proteomics; Data Mining and Knowledge Discovery;
  • 出版者:BioMed Central
  • ISSN:2047-217X
文摘
Optical mapping has been widely used to improve de novo plant genome assemblies, including rice, maize, Medicago, Amborella, tomato and wheat, with more genomes in the pipeline. Optical mapping provides long-range information of the genome and can more easily identify large structural variations. The ability of optical mapping to assay long single DNA molecules nicely complements short-read sequencing which is more suitable for the identification of small and short-range variants. Direct use of optical mapping to study population-level genetic diversity is currently limited to microbial strain typing and human diversity studies. Nonetheless, optical mapping shows great promise in the study of plant trait development, domestication and polyploid evolution. Here we review the current applications and future prospects of optical mapping in the field of plant comparative genomics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700