Characterization and expression profiling of glutathione S-transferases in the diamondback moth, Plutella xylostella (L.)
详细信息    查看全文
  • 作者:Yanchun You (1) (2) (3)
    Miao Xie (1) (2) (3)
    Nana Ren (1) (3)
    Xuemin Cheng (1) (3)
    Jianyu Li (1) (2) (3)
    Xiaoli Ma (1) (3)
    Minming Zou (1) (3)
    Liette Vasseur (1) (4)
    Geoff M Gurr (1) (3) (5)
    Minsheng You (1) (3)

    1. Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety
    ; Fujian Agriculture and Forestry University ; Fuzhou ; 350002 ; China
    2. College of Life Science
    ; Fujian Agriculture and Forestry University ; Fuzhou ; 350002 ; China
    3. Key Laboratory of Integrated Pest Management of Fujian and Taiwan
    ; China Ministry of Agriculture ; Fuzhou ; 350002 ; China
    4. Department of Biological Sciences
    ; Brock University ; 500 Glenridge Avenue ; St. Catharines ; ON ; L2S 3A1 ; Canada
    5. EH Graham Centre
    ; Charles Sturt University ; Orange ; NSW ; 2800 ; Australia
  • 关键词:Transcriptome analysis ; qRT ; PCR ; Phylogenetic analysis ; Insect pest ; Lepidoptera
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:3,070 KB
  • 参考文献:1. Furlong, MJ, Wright, DJ, Dosdall, LM (2013) Diamondback moth ecology and management: problems, progress, and prospects. Annu Rev Entomol 58: pp. 517-41 CrossRef
    2. Georghiou, GP (1990) Overview of insecticide resistance. Managing resistance to agrochemicals. vol. 421. American Chemical Society, Washington, DC, pp. 18-41 CrossRef
    3. Sonoda, S (2010) Molecular analysis of pyrethroid resistance conferred by target insensitivity and increased metabolic detoxification in Plutella xylostella. Pest Manage Sci 66: pp. 572-5 CrossRef
    4. Kim, JI, Joo, YR, Kwon, M, Kim, GH, Lee, SH (2012) Mutation in ace1 associated with an insecticide resistant population of Plutella xylostella. J Asia-Pacif Entomol 15: pp. 401-7 CrossRef
    5. Dukre, AS, Moharil, MP, Ghodki, BS, Rao, NGV (2009) Role of glutathione S-transferase in imparting resistance to pyrethroids in Plutella xylostella(L.). Int J Integr Bio 6: pp. 17-21
    6. Ranson, H, Hemingway, J 5.11 - Glutathione Transferases. In: Gilbert, LI eds. (2005) Compr Mol Insect Sci. Elsevier, Amsterdam, pp. 383-402 CrossRef
    7. Enayati, AA, Ranson, H, Hemingway, J (2005) Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14: pp. 3-8 CrossRef
    8. Clark, AG (1989) The comparative enzymology of the glutathione S-transferases from non-vertebrate organisms. Comp Biochem Physiol B: Comp Biochem 92: pp. 419-46
    9. Fournier, D, Bride, JM, Poirie, M, Berge, JB, Plapp, FW (1992) Insect glutathione S-transferases. Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides. J Biol Chem 267: pp. 1840-5
    10. Ranson, H, Rossiter, L, Ortelli, F, Jensen, B, Wang, X, Roth, CW (2001) Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J 359: pp. 295-304 CrossRef
    11. Enayati, AA, Vontas, JG, Small, GJ, McCarroll, L, Hemingway, J (2001) Quantification of pyrethroid insecticides from treated bednets using a mosquito recombinant glutathione S-transferase. Med Vet Entomol 15: pp. 58-63 CrossRef
    12. Chelvanayagama, G, Parker, MW, Board, PG (2001) Fly fishing for GSTs: A unified nomenclature for mammalian and insect glutathione transferases. Chem-Biol Interact 133: pp. 256-60
    13. Low, WY, Ng, HL, Morton, CJ, Parker, MW, Batterham, P, Robin, C (2007) Molecular evolution of glutathione S-transferases in the genus Drosophila. Genetics 177: pp. 1363-75 CrossRef
    14. Sawicki, R, Singh, SP, Mondal, AK, Benes, H, Zimniak, P (2003) Cloning, expression and biochemical characterization of one Epsilon-class (GST-3) and ten Delta-class (GST-1) glutathione S-transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class. Biochem J 370: pp. 661-9 CrossRef
    15. Ketterman, AJ, Saisawang, C, Wongsantichon, J (2011) Insect glutathione transferases. Drug Metab Rev 43: pp. 253-65 CrossRef
    16. Abel, EL, Bammler, TK, Eaton, DL (2004) Biotransformation of methyl parathion by glutathione S-transferases. Toxicol Sci 79: pp. 224-32 CrossRef
    17. Huang, HS, Hu, NT, Yao, YE, Wu, CY, Chiang, SW, Sun, CN (1998) Molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the diamondback moth. Plutella xylostella. Insect Biochem Mol Bio 28: pp. 651-8 CrossRef
    18. Wei, SH, Clark, AG, Syvanen, M (2001) Identification and cloning of a key insecticide-metabolizing glutathione S-transferase (MdGST-6A) from a hyper insecticide-resistant strain of the housefly Musca domestica. Insect Biochem Mol Bio 31: pp. 1145-53 CrossRef
    19. Hemingway, J, Miyamoto, J, Herath, PRJ (1991) A possible novel link between organophosphorus and DDT insecticide resistance genes in Anopheles: Supporting evidence from fenitrothion metabolism studies. Pestic Biochem Physiol 39: pp. 49-56 CrossRef
    20. Yamamoto, K, Shigeoka, Y, Aso, Y, Banno, Y, Kimura, M, Nakashima, T (2009) Molecular and biochemical characterization of a Zeta-class glutathione S-transferase of the silkmoth. Pestic Biochem Physiol 94: pp. 30-5 CrossRef
    21. Yamamoto, K, Nagaoka, S, Banno, Y, Aso, Y (2009) Biochemical properties of an omega-class glutathione S-transferase of the silkmoth, Bombyx mori. Comp Biochem Physiol C: Toxicol Pharmacol 149: pp. 461-7
    22. Rogers, ME, Jani, MK, Vogt, RG (1999) An olfactory-specific glutathione-S-transferase in the sphinx moth Manduca sexta. J Exp Biol 202: pp. 1625-37
    23. You, M, Yue, Z, He, W, Yang, X, Yang, G, Xie, M (2013) A heterozygous moth genome provides insights into herbivory and detoxification. Nat Genet 45: pp. 220-5 CrossRef
    24. Chen X, Zhang YL. Identification and characterisation of multiple glutathione / S-transferase genes from the diamondback moth, / Plutella xylostella. Pest Manag Sci. 2014
    25. Jouraku, A, Yamamoto, K, Kuwazaki, S, Urio, M, Suetsugu, Y, Narukawa, J (2013) KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella. BMC Genomics 14: pp. 464 CrossRef
    26. He, W, You, M, Vasseur, L, Yang, G, Xie, M, Cui, K (2012) Developmental and insecticide-resistant insights from the de novo assembled transcriptome of the diamondback moth. Plutella xylostella. Genomics 99: pp. 169-77 CrossRef
    27. Tang, W, Yu, L, He, W, Yang, G, Ke, F, Baxter, SW (2014) DBM-DB: the diamondback moth genome database. Database (Oxford) 2014: pp. bat087 CrossRef
    28. Yu, Q, Lu, C, Li, B, Fang, S, Zuo, W, Dai, F (2008) Identification, genomic organization and expression pattern of glutathione S-transferase in the silkworm, Bombyx mori. Insect Biochem Mol Bio 38: pp. 1158-64 CrossRef
    29. Ding, Y, Ortelli, F, Rossiter, LC, Hemingway, J, Ranson, H (2003) The Anopheles gambiae glutathione transferase supergene family: annotation, phylogeny and expression profiles. BMC Genomics 4: pp. 35 CrossRef
    30. Friedman, R (2011) Genomic organization of the glutathione S-transferase family in insects. Mol Phylogen Evol 61: pp. 924-32 CrossRef
    31. Oakeshott, JG, Johnson, RM, Berenbaum, MR, Ranson, H, Cristino, AS, Claudianos, C (2010) Metabolic enzymes associated with xenobiotic and chemosensory responses in Nasonia vitripennis. Insect Mol Biol 19: pp. 147-63 CrossRef
    32. Nair, PMG, Choi, J (2011) Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol 101: pp. 550-60 CrossRef
    33. Deng, H, Huang, Y, Feng, Q, Zheng, S (2009) Two epsilon glutathione S-transferase cDNAs from the common cutworm, Spodoptera litura: Characterization and developmental and induced expression by insecticides. J Insect Physiol 55: pp. 1174-83 CrossRef
    34. Lumjuan, N, Rajatileka, S, Changsom, D, Wicheer, J, Leelapat, P, Prapanthadara, L-a (2011) The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem Mol Bio 41: pp. 203-9 CrossRef
    35. Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M, Kumar, S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: pp. 2731-9 CrossRef
    36. Vontas, JG, Small, GJ, Nikou, DC, Ranson, H, Hemingway, J (2002) Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochem J 362: pp. 329-37 CrossRef
    37. Wang, JY, McCommas, S, Syvanen, M (1991) Molecular cloning of a glutathione S-transferase overproduced in an insecticide-resistant strain of the housefly (Musca domestica). Mol Gen Genet 227: pp. 260-6 CrossRef
    38. Shi, H, Pei, L, Gu, S, Zhu, S, Wang, Y, Zhang, Y (2012) Glutathione S-transferase (GST) genes in the red flour beetle, Tribolium castaneum, and comparative analysis with five additional insects. Genomics 100: pp. 327-35 CrossRef
    39. Savard, J, Tautz, D, Richards, S, Weinstock, GM, Gibbs, RA, Werren, JH (2006) Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of Holometabolous insects. Genome Res 16: pp. 1334-8 CrossRef
    40. Haddrill, PR, Charlesworth, B, Halligan, DL, Andolfatto, P (2005) Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content. Genome Biol 6: pp. R67 CrossRef
    41. Atkinson, HJ, Babbitt, PC (2009) Glutathione transferases are structural and functional outliers in the thioredoxin fold. Biochemistry 48: pp. 11108-16 CrossRef
    42. Armstrong, RN (1997) Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 10: pp. 2-18 CrossRef
    43. Zhou, WW, Liang, QM, Xu, Y, Gurr, GM, Bao, YY, Zhou, XP (2013) Genomic insights into the gutathione S-transferase gene family of two rice planthoppers, Nilaparvata lugens (Stal) and Sogatella furcifera (Horvath) (Hemiptera: Delphacidae). PLoS One 8: pp. e56604 CrossRef
    44. Wongtrakul, J, Pongjaroenkit, S, Leelapat, P, Nachaiwieng, W, Prapanthadara, LA, Ketterman, AJ (2010) Expression and characterization of three new glutathione transferases, an epsilon (AcGSTE2-2), omega (AcGSTO1-1), and theta (AcGSTT1-1) from Anopheles cracens (Diptera: Culicidae), a major Thai malaria vector. J Med Entomol 47: pp. 162-71 CrossRef
    45. Li, X, Schuler, MA, Berenbaum, MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52: pp. 231-53 CrossRef
    46. Sun, XQ, Zhang, MX, Yu, JY, Jin, Y, Ling, B, Du, JP (2013) Glutathione S-transferase of brown planthoppers (Nilaparvata lugens) is essential for their adaptation to gramine-containing host plants. PLoS One 8: pp. e64026 CrossRef
    47. Zhang, Y, Yan, H, Lu, W, Li, Y, Guo, X, Xu, B (2013) A novel Omega-class glutathione S-transferase gene in Apis cerana cerana: molecular characterisation of GSTO2 and its protective effects in oxidative stress. Cell Stress Chaperones 18: pp. 503-16 CrossRef
    48. Lumjuan, N, McCarroll, L, Prapanthadara, LA, Hemingway, J, Ranson, H (2005) Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochem Mol Bio 35: pp. 861-71 CrossRef
    49. Yamamoto, K, Ichinose, H, Aso, Y, Banno, Y, Kimura, M, Nakashima, T (2011) Molecular characterization of an insecticide-induced novel glutathione transferase in silkworm. Biochim Biophys Acta 1810: pp. 420-6 CrossRef
    50. Samra, AI, Kamita, SG, Yao, H-W, Cornel, AJ, Hammock, BD (2012) Cloning and characterization of two glutathione S-transferases from pyrethroid-resistant Culex pipiens. Pest Manage Sci 68: pp. 764-72 CrossRef
    51. Dow, JA (2009) Insights into the Malpighian tubule from functional genomics. J Exp Biol 212: pp. 435-45 CrossRef
    52. Yu, QY, Lu, C, Li, WL, Xiang, ZH, Zhang, Z (2009) Annotation and expression of carboxylesterases in the silkworm, Bombyx mori. BMC Genomics 10: pp. 553 CrossRef
    53. Megy, K, Emrich, SJ, Lawson, D, Campbell, D, Dialynas, E, Hughes, DS (2012) VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics. Nucleic Acids Res 40: pp. D729-34 CrossRef
    54. Marygold, SJ, Leyland, PC, Seal, RL, Goodman, JL, Thurmond, J, Strelets, VB (2013) FlyBase: improvements to the bibliography. Nucleic Acids Res 41: pp. D751-7 CrossRef
    55. Legeai, F, Shigenobu, S, Gauthier, JP, Colbourne, J, Rispe, C, Collin, O (2010) AphidBase: a centralized bioinformatic resource for annotation of the pea aphid genome. Insect Mol Biol 19: pp. 5-12 CrossRef
    56. Kim, HS, Murphy, T, Xia, J, Caragea, D, Park, Y, Beeman, RW (2010) BeetleBase in 2010: revisions to provide comprehensive genomic information for Tribolium castaneum. Nucleic Acids Res 38: pp. D437-42 CrossRef
    57. Munoz-Torres, MC, Reese, JT, Childers, CP, Bennett, AK, Sundaram, JP, Childs, KL (2011) Hymenoptera Genome Database: integrated community resources for insect species of the order Hymenoptera. Nucleic Acids Res 39: pp. D658-62 CrossRef
    58. Larkin, MA, Blackshields, G, Brown, NP, Chenna, R, McGettigan, PA, McWilliam, H (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: pp. 2947-8 CrossRef
    59. Saitou, N, Nei, M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: pp. 406-25
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Glutathione S-transferases (GSTs) are multifunctional detoxification enzymes that play important roles in insects. The completion of several insect genome projects has enabled the identification and characterization of GST genes over recent years. This study presents a genome-wide investigation of the diamondback moth (DBM), Plutella xylostella, a species in which the GSTs are of special importance because this pest is highly resistant to many insecticides. Results A total of 22 putative cytosolic GSTs were identified from a published P. xylostella genome and grouped into 6 subclasses (with two unclassified). Delta, Epsilon and Omega GSTs were numerically superior with 5 genes for each of the subclasses. The resulting phylogenetic tree showed that the P. xylostella GSTs were all clustered into Lepidoptera-specific branches. Intron sites and phases as well as GSH binding sites were strongly conserved within each of the subclasses in the GSTs of P. xylostella. Transcriptome-, RNA-seq- and qRT-PCR-based analyses showed that the GST genes were developmental stage- and strain-specifically expressed. Most of the highly expressed genes in insecticide resistant strains were also predominantly expressed in the Malpighian tubules, midgut or epidermis. Conclusions To date, this is the most comprehensive study on genome-wide identification, characterization and expression profiling of the GST family in P. xylostella. The diversified features and expression patterns of the GSTs are inferred to be associated with the capacity of this species to develop resistance to a wide range of pesticides and biological toxins. Our findings provide a base for functional research on specific GST genes, a better understanding of the evolution of insecticide resistance, and strategies for more sustainable management of the pest.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700