Pre-treatment with new kynurenic acid amide dose-dependently prevents the nitroglycerine-induced neuronal activation and sensitization in cervical part of trigemino-cervical complex
详细信息    查看全文
  • 作者:Annamária Fejes-Szabó (1)
    Zsuzsanna Bohár (1) (2)
    Enik? Vámos (1)
    Gábor Nagy-Grócz (1)
    Lilla Tar (1)
    Gábor Veres (1)
    Dénes Zádori (1)
    Márton Szentirmai (1)
    János Tajti (1)
    István Szatmári (3)
    Ferenc Fül?p (3)
    József Toldi (4)
    árpád Párdutz (1)
    László Vécsei (1) (2)
  • 关键词:Cervical part of trigemino ; cervical complex ; Kynurenic acid ; Nitroglycerine ; Trigeminal activation ; Trigeminal sensitization ; N ; (2 ; N ; pyrrolidinylethyl) ; 4 ; oxo ; 1H ; quinoline ; 2 ; carboxamide hydrochloride
  • 刊名:Journal of Neural Transmission
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:121
  • 期:7
  • 页码:725-738
  • 全文大小:1,508 KB
  • 参考文献:1. Begon S, Pickering G, Eschalier A, Mazur A, Rayssiguier Y, Dubray C (2001) Role of spinal NMDA receptors, protein kinase C and nitric oxide synthase in the hyperalgesia induced by magnesium deficiency in rats. Br J Pharmacol 134(6):1227-236. doi:10.1038/sj.bjp.0704354 CrossRef
    2. Birch PJ, Grossman CJ, Hayes AG (1988) Kynurenate and FG9041 have both competitive and non-competitive antagonist actions at excitatory amino acid receptors. Eur J Pharmacol 151(2):313-15 (pii:0014-2999(88)90814-X) CrossRef
    3. Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347(6295):768-70. doi:10.1038/347768a0 CrossRef
    4. Burstein R, Yamamura H, Malick A, Strassman AM (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 79(2):964-82
    5. Carpenedo R, Pittaluga A, Cozzi A, Attucci S, Galli A, Raiteri M, Moroni F (2001) Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur J Neurosci 13(11):2141-147 (pii: ejn1592) CrossRef
    6. Carstens E, Simons CT, Dessirier JM, Carstens MI, Jinks SL (2000) Role of neuronal nicotinic-acetylcholine receptors in the activation of neurons in trigeminal subnucleus caudalis by nicotine delivered to the oral mucosa. Exp Brain Res 132(3):375-83. doi:10.1007/s002210000351 CrossRef
    7. Chacur M, Matos RJ, Alves AS, Rodrigues AC, Gutierrez V, Cury Y, Britto LR (2010) Participation of neuronal nitric oxide synthase in experimental neuropathic pain induced by sciatic nerve transection. Braz J Med Biol Res 43(4):367-76. doi:10.1590/S0100-879X2010007500019 CrossRef
    8. Christiansen I, Thomsen LL, Daugaard D, Ulrich V, Olesen J (1999) Glyceryl trinitrate induces attacks of migraine without aura in sufferers of migraine with aura. Cephalalgia 19 (7):660-67. doi:10.1046/j.1468-2982.1999.019007660.x (discussion 626)
    9. Christoph T, Reissmuller E, Schiene K, Englberger W, Chizh BA (2005) Antiallodynic effects of NMDA glycine(B) antagonists in neuropathic pain: possible peripheral mechanisms. Brain Res 1048(1-):218-27. doi:10.1016/j.brainres.2005.04.081 CrossRef
    10. D’Andrea G, Leon A (2010) Pathogenesis of migraine: from neurotransmitters to neuromodulators and beyond. Neurol Sci 31(Suppl 1):S1–S7. doi:10.1007/s10072-010-0267-8 CrossRef
    11. Davis AM, Inturrisi CE (2001) Attenuation of hyperalgesia by LY235959, a competitive N-methyl-D-aspartate receptor antagonist. Brain Res 894(1):150-53 (pii:S0006-8993(00)03325-4) CrossRef
    12. Demeter I, Nagy K, Gellert L, Vecsei L, Fulop F, Toldi J (2012) A novel kynurenic acid analog (SZR104) inhibits pentylenetetrazole-induced epileptiform seizures. An electrophysiological study: special issue related to kynurenine. J Neural Transm 119 (2):151-54. doi:10.1007/s00702-011-0755-x
    13. Denenberg VH (1969) Open-field bheavior in the rat: what does it mean? Ann N Y Acad Sci 159(3):852-59. doi:10.1111/j.1749-6632.1969.tb12983.x CrossRef
    14. Di Clemente L, Coppola G, Magis D, Gerardy PY, Fumal A, De Pasqua V, Di Piero V, Schoenen J (2009) Nitroglycerin sensitises in healthy subjects CNS structures involved in migraine pathophysiology: evidence from a study of nociceptive blink reflexes and visual evoked potentials. Pain 144(1-):156-61. doi:10.1016/j.pain.2009.04.018 CrossRef
    15. Entrena A, Camacho ME, Carrion MD, Lopez-Cara LC, Velasco G, Leon J, Escames G, Acuna-Castroviejo D, Tapias V, Gallo MA, Vivo A, Espinosa A (2005) Kynurenamines as neural nitric oxide synthase inhibitors. J Med Chem 48(26):8174-181. doi:10.1021/jm050740o CrossRef
    16. Fang L, Wu J, Lin Q, Willis WD (2002) Calcium-calmodulin-dependent protein kinase II contributes to spinal cord central sensitization. J Neurosci 22(10):4196-204 (pii: 2002634322/10/4196)
    17. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56(6):2007-017. doi:10.1111/j.1471-4159.1991.tb03460.x CrossRef
    18. Fulop F, Szatmari I, Toldi J, Vecsei L (2012) Modifications on the carboxylic function of kynurenic acid. J Neural Transm 119(2):109-14. doi:10.1007/s00702-011-0721-7 CrossRef
    19. Fuvesi J, Rajda C, Bencsik K, Toldi J, Vecsei L (2012) The role of kynurenines in the pathomechanism of amyotrophic lateral sclerosis and multiple sclerosis: therapeutic implications. J Neural Transm 119(2):225-34. doi:10.1007/s00702-012-0765-3 CrossRef
    20. Garry MG, Walton LP, Davis MA (2000) Capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from the spinal cord is mediated by nitric oxide but not by cyclic GMP. Brain Res 861(2):208-19 (pii: S0006-8993(99)02448-8) CrossRef
    21. Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336(6197):385-88. doi:10.1038/336385a0 CrossRef
    22. Gellert L, Varga D, Ruszka M, Toldi J, Farkas T, Szatmari I, Fulop F, Vecsei L, Kis Z (2012) Behavioural studies with a newly developed neuroprotective KYNA-amide. J Neural Transm 119(2):165-72. doi:10.1007/s00702-011-0692-8 CrossRef
    23. Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383(6602):713-16. doi:10.1038/383713a0 CrossRef
    24. Herve C, Beyne P, Jamault H, Delacoux E (1996) Determination of tryptophan and its kynurenine pathway metabolites in human serum by high-performance liquid chromatography with simultaneous ultraviolet and fluorimetric detection. J Chromatogr B Biomed Appl 675(1):157-61 (pii: 037843479500341X) CrossRef
    25. Just S, Arndt K, Doods H (2005) The role of CGRP and nicotinic receptors in centrally evoked facial blood flow changes. Neurosci Lett 381(1-):120-24. doi:10.1016/j.neulet.2005.02.012 CrossRef
    26. Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with N-methyl-d -aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52(4):1319-328. doi:10.1111/j.1471-4159.1989.tb01881.x CrossRef
    27. Knyihar-Csillik E, Toldi J, Mihaly A, Krisztin-Peva B, Chadaide Z, Nemeth H, Fenyo R, Vecsei L (2007) Kynurenine in combination with probenecid mitigates the stimulation-induced increase of c-fos immunoreactivity of the rat caudal trigeminal nucleus in an experimental migraine model. J Neural Transm 114(4):417-21. doi:10.1007/s00702-006-0545-z CrossRef
    28. Knyihar-Csillik E, Mihaly A, Krisztin-Peva B, Robotka H, Szatmari I, Fulop F, Toldi J, Csillik B, Vecsei L (2008) The kynurenate analog SZR-72 prevents the nitroglycerol-induced increase of c-fos immunoreactivity in the rat caudal trigeminal nucleus: comparative studies of the effects of SZR-72 and kynurenic acid. Neurosci Res 61(4):429-32. doi:10.1016/j.neures.2008.04.009 CrossRef
    29. Kristensen JD, Post C, Gordh TJ, Svensson BA (1993) Spinal cord morphology and antinociception after chronic intrathecal administration of excitatory amino acid antagonists in the rat. Pain 54(3):309-16 (pii: 0304-3959(93)90030-S) CrossRef
    30. Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10(9):895-26. doi:10.1016/j.jpain.2009.06.012 CrossRef
    31. Liu L, Chang GQ, Jiao YQ, Simon SA (1998) Neuronal nicotinic acetylcholine receptors in rat trigeminal ganglia. Brain Res 809(2):238-45 (pii: S0006-8993(98)00862-2) CrossRef
    32. Markovics A, Kormos V, Gaszner B, Lashgarara A, Szoke E, Sandor K, Szabadfi K, Tuka B, Tajti J, Szolcsanyi J, Pinter E, Hashimoto H, Kun J, Reglodi D, Helyes Z (2012) Pituitary adenylate cyclase-activating polypeptide plays a key role in nitroglycerol-induced trigeminovascular activation in mice. Neurobiol Dis 45(1):633-44. doi:10.1016/j.nbd.2011.10.010 CrossRef
    33. Marosi M, Nagy D, Farkas T, Kis Z, Rozsa E, Robotka H, Fulop F, Vecsei L, Toldi J (2010) A novel kynurenic acid analogue: a comparison with kynurenic acid. An in vitro electrophysiological study. J Neural Transm 117(2):183-88. doi:10.1007/s00702-009-0346-2 CrossRef
    34. McGehee DS, Heath MJ, Gelber S, Devay P, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269(5231):1692-696. doi:10.1126/science.7569895 CrossRef
    35. Mecs L, Tuboly G, Nagy E, Benedek G, Horvath G (2009) The peripheral antinociceptive effects of endomorphin-1 and kynurenic acid in the rat inflamed joint model. Anesth Analg 109(4):1297-304. doi:10.1213/ane.0b013e3181b21c5e CrossRef
    36. Mitsikostas DD, Sanchez del Rio M, Waeber C, Moskowitz MA, Cutrer FM (1998) The NMDA receptor antagonist MK-801 reduces capsaicin-induced c-fos expression within rat trigeminal nucleus caudalis. Pain 76(1-):239-48 (pii: S0304-3959(98)00051-7) CrossRef
    37. Mitsikostas DD, Sanchez del Rio M, Waeber C, Huang Z, Cutrer FM, Moskowitz MA (1999) Non-NMDA glutamate receptors modulate capsaicin induced c-fos expression within trigeminal nucleus caudalis. Br J Pharmacol 127(3):623-30. doi:10.1038/sj.bjp.0702584 CrossRef
    38. Moskowitz MA (2008) Defining a pathway to discovery from bench to bedside: the trigeminovascular system and sensitization. Headache 48(5):688-90. doi:10.1111/j.1526-4610.2008.01110.x CrossRef
    39. Nasstrom J, Karlsson U, Post C (1992) Antinociceptive actions of different classes of excitatory amino acid receptor antagonists in mice. Eur J Pharmacol 212(1):21-9 (pii: 0014-2999(92)90067-E) CrossRef
    40. Nemeth H, Toldi J, Vecsei L (2006) Kynurenines, Parkinson’s disease and other neurodegenerative disorders: preclinical and clinical studies. J Neural Transm Suppl 70:285-04. doi:10.1007/978-3-211-45295-0_45 CrossRef
    41. Nicolodi M, Sicuteri F (1995) Exploration of NMDA receptors in migraine: therapeutic and theoretic implications. Int J Clin Pharmacol Res 15(5-):181-89
    42. Ohshiro H, Tonai-Kachi H, Ichikawa K (2008) GPR35 is a functional receptor in rat dorsal root ganglion neurons. Biochem Biophys Res Commun 365(2):344-48. doi:10.1016/j.bbrc.2007.10.197 CrossRef
    43. Oshinsky ML, Luo J (2006) Neurochemistry of trigeminal activation in an animal model of migraine. Headache 46(Suppl 1):S39–S44. doi:10.1111/j.1526-4610.2006.00489.x CrossRef
    44. Pardutz A, Krizbai I, Multon S, Vecsei L, Schoenen J (2000) Systemic nitroglycerin increases nNOS levels in rat trigeminal nucleus caudalis. NeuroReport 11(14):3071-075. doi:10.1097/00001756-200009280-00008 CrossRef
    45. Pardutz A, Multon S, Malgrange B, Parducz A, Vecsei L, Schoenen J (2002) Effect of systemic nitroglycerin on CGRP and 5-HT afferents to rat caudal spinal trigeminal nucleus and its modulation by estrogen. Eur J Neurosci 15(11):1803-809 (pii: 2031) CrossRef
    46. Pardutz A, Hoyk Z, Varga H, Vecsei L, Schoenen J (2007) Oestrogen-modulated increase of calmodulin-dependent protein kinase II (CamKII) in rat spinal trigeminal nucleus after systemic nitroglycerin. Cephalalgia 27(1):46-3. doi:10.1111/j.1468-2982.2006.01244.x CrossRef
    47. Pardutz A, Fejes A, Bohar Z, Tar L, Toldi J, Vecsei L (2012) Kynurenines and headache. J Neural Transm 119(2):285-96. doi:10.1007/s00702-011-0665-y CrossRef
    48. Pereira EF, Hilmas C, Santos MD, Alkondon M, Maelicke A, Albuquerque EX (2002) Unconventional ligands and modulators of nicotinic receptors. J Neurobiol 53(4):479-00. doi:10.1002/neu.10146 CrossRef
    49. Quartu M, Serra MP, Ambu R, Lai ML, Del Fiacco M (2002) AMPA-type glutamate receptor subunits 2/3 in the human trigeminal sensory ganglion and subnucleus caudalis from prenatal ages to adulthood. Mech Ageing Dev 123(5):463-71 (pii: S004763740100358X) CrossRef
    50. Sicuteri F, Del Bene E, Poggioni M, Bonazzi A (1987) Unmasking latent dysnociception in healthy subjects. Headache 27(4):180-85. doi:10.1111/j.1526-4610.1987.hed2704180.x CrossRef
    51. Storer RJ, Goadsby PJ (1999) Trigeminovascular nociceptive transmission involves N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate receptors. Neuroscience 90(4):1371-376 (pii: S0306-4522(98)00536-3) CrossRef
    52. Strassman AM, Mineta Y, Vos BP (1994) Distribution of fos-like immunoreactivity in the medullary and upper cervical dorsal horn produced by stimulation of dural blood vessels in the rat. J Neurosci 14(6):3725-735 (pii: 0270-6474/94/143725-l1$05.00/O)
    53. Svendsen F, Tjolsen A, Hole K (1998) AMPA and NMDA receptor-dependent spinal LTP after nociceptive tetanic stimulation. NeuroReport 9(6):1185-190. doi:10.1097/00001756-199804200-00041 CrossRef
    54. Tallaksen-Greene SJ, Young AB, Penney JB, Beitz AJ (1992) Excitatory amino acid binding sites in the trigeminal principal sensory and spinal trigeminal nuclei of the rat. Neurosci Lett 141(1):79-3 (pii: 0304-3940(92)90339-9) CrossRef
    55. Tassorelli C, Joseph SA (1995) Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res 682(1-):167-81 (pii: 0006-8993(95)00348-T) CrossRef
    56. Tassorelli C, Joseph SA, Nappi G (1997) Neurochemical mechanisms of nitroglycerin-induced neuronal activation in rat brain: a pharmacological investigation. Neuropharmacology 36(10):1417-424 (pii: S0028390897001226) CrossRef
    57. Vamos E, Pardutz A, Varga H, Bohar Z, Tajti J, Fulop F, Toldi J, Vecsei L (2009) L-kynurenine combined with probenecid and the novel synthetic kynurenic acid derivative attenuate nitroglycerin-induced nNOS in the rat caudal trigeminal nucleus. Neuropharmacology 57(4):425-29. doi:10.1016/j.neuropharm.2009.06.033 CrossRef
    58. Vamos E, Fejes A, Koch J, Tajti J, Fulop F, Toldi J, Pardutz A, Vecsei L (2010) Kynurenate derivative attenuates the nitroglycerin-induced CamKIIalpha and CGRP expression changes. Headache 50(5):834-43. doi:10.1111/j.1526-4610.2009.01574.xHED1574 CrossRef
    59. Vecsei L, Szalardy L, Fulop F, Toldi J (2013) Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 12(1):64-2. doi:10.1038/nrd3793nrd3793 CrossRef
    60. Wang XM, Mokha SS (1996) Opioids modulate N-methyl-d -aspartic acid (NMDA)-evoked responses of trigeminothalamic neurons. J Neurophysiol 76(3):2093-096
    61. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281(31):22021-2028. doi:10.1074/jbc.M603503200 CrossRef
    62. Watanabe M, Mishina M, Inoue Y (1994) Distinct gene expression of the N-methyl-D-aspartate receptor channel subunit in peripheral neurons of the mouse sensory ganglia and adrenal gland. Neurosci Lett 165(1-):183-86. doi:10.1016/0304-3940(94)90740-4 CrossRef
    63. Zadori D, Nyiri G, Szonyi A, Szatmari I, Fulop F, Toldi J, Freund TF, Vecsei L, Klivenyi P (2011) Neuroprotective effects of a novel kynurenic acid analogue in a transgenic mouse model of Huntington’s disease. J Neural Transm 118(6):865-75. doi:10.1007/s00702-010-0573-6 CrossRef
    64. Zhang RX, Mi ZP, Qiao JT (1994) Changes of spinal substance P, calcitonin gene-related peptide, somatostatin, Met-enkephalin and neurotensin in rats in response to formalin-induced pain. Regul Pept 51(1):25-2. doi:10.1016/0167-0115(94)90131-7 CrossRef
  • 作者单位:Annamária Fejes-Szabó (1)
    Zsuzsanna Bohár (1) (2)
    Enik? Vámos (1)
    Gábor Nagy-Grócz (1)
    Lilla Tar (1)
    Gábor Veres (1)
    Dénes Zádori (1)
    Márton Szentirmai (1)
    János Tajti (1)
    István Szatmári (3)
    Ferenc Fül?p (3)
    József Toldi (4)
    árpád Párdutz (1)
    László Vécsei (1) (2)

    1. Department of Neurology, Faculty of Medicine, Albert Szent-Gy?rgyi Clinical Centre, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
    2. Neuroscience Research Group of the Hungarian Academy of Sciences and University of Szeged, Szeged, Hungary
    3. Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
    4. Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
  • ISSN:1435-1463
文摘
The systemic administration of nitroglycerine induces attacks in migraineurs and is able to activate and sensitize the trigeminal system in animals involving glutamate and α7-nicotinic acetylcholine receptors, among others. Kynurenic acid is one of the endogenous glutamate receptor antagonists, and exerts inhibitory action on the α7-nicotinic acetylcholine receptors. Since kynurenic acid penetrates the blood–brain barrier poorly, therefore a newly synthesized kynurenic acid amide, N-(2-N-pyrrolidinylethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride (KYNAa) was used with such a side-chain substitution to facilitate brain penetration in our study. We evaluated its modulatory effect on kynurenic acid concentration in the cervical part of trigemino-cervical complex (C1–C2) and in the model of nitroglycerine-induced trigeminal activation using male Sprague–Dawley rats. One hour after 1?mmol/kg bodyweight KYNAa administration, the kynurenic acid level increased significantly in C1–C2, which returned to the basal level at 300?min measured by high-performance liquid chromatography. KYNAa pre-treatment had dose-dependent, mitigating action on nitroglycerine-induced decrease in calcitonin gene-related peptide and increase in c-Fos, neuronal nitric oxide synthase and calmodulin-dependent protein kinase II alpha expression in the C1–C2. KYNAa also mitigated the behavioural changes after nitroglycerine. Thus, in this model KYNAa is able to modulate in a dose-dependent manner the changes in neurochemical markers of activation and sensitization of the trigeminal system directly and indirectly—via forming kynurenic acid, possibly acting on peripheral and central glutamate or α7-nicotinic acetylcholine receptors. These results suggest that application of kynurenic acid derivatives could be a useful therapeutic strategy in migraine headache in the future with a different mechanism of action.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700