Polyethylene glycols interact with membrane glycerophospholipids: is this part of their mechanism for hypothermic graft protection?
详细信息    查看全文
  • 作者:Delphine Dutheil (1) (2) (5)
    Anja Underhaug Gjerde (4)
    Isabelle Petit-Paris (1) (3)
    Gérard Mauco (1) (2) (3)
    Holm Holmsen (4)
  • 关键词:Organ transplantation ; Polyethylene Glycol ; Hypothermia ; Membrane Fluidity ; Glycerophospholipid
  • 刊名:Journal of Chemical Biology
  • 出版年:2009
  • 出版时间:March 2009
  • 年:2009
  • 卷:2
  • 期:1
  • 页码:39-49
  • 全文大小:499KB
  • 参考文献:1. Wicomb WN, Collins GM (1989) 24-hour rabbit heart storage with UW solution. Effects of low-flow perfusion, colloid, and shelf storage. Transplantation 48:6- CrossRef
    2. Mosbah IB, Franco-Gou R, Abdennebi HB et al (2006) Effects of polyethylene glycol and hydroxyethyl starch in University of Wisconsin preservation solution on human red blood cell aggregation and viscosity. Transplant Proc 38:1229-235 CrossRef
    3. Ben Abdennebi H, Steghens JP, Hadj-Aissa A et al (2002) A preservation solution with polyethylene glycol and calcium: a possible multiorgan liquid. Transpl Int 15:348-54 CrossRef
    4. Badet L, Ben Abdennebi H, Petruzzo P et al (2005) Effect of IGL-1, a new preservation solution, on kidney grafts (a pre-clinical study). Transpl Int 17:815-21 CrossRef
    5. Doucet C, Dutheil D, Petit I et al (2004) Influence of colloid, preservation medium and trimetazidine on renal medulla injury. Biochim Biophys Acta 1673:105-14
    6. Eugene M (2004) Polyethyleneglycols and immunocamouflage of the cells tissues and organs for transplantation. Cell Mol Biol (Noisy-le-grand) 50:209-15
    7. Lee WY, Sehon AH (1978) Suppression of reaginic antibodies with modified allergens. I. Reduction in allergenicity of protein allergens by conjugation to polyethylene glycol. Int Arch Allergy Appl Immunol 56:159-70
    8. Scott MD, Murad KL (1998) Cellular camouflage: fooling the immune system with polymers. Curr Pharm Des 4:423-38
    9. Hauet T, Goujon JM, Baumert H et al (2002) Polyethylene glycol reduces the inflammatory injury due to cold ischemia/reperfusion in autotransplanted pig kidneys. Kidney Int 62:654-67 CrossRef
    10. Wanders A, Akyurek ML, Waltenberger J et al (1995) Ischemia-induced transplant arteriosclerosis in the rat. Arterioscler Thromb Vasc Biol 15:145-55
    11. Dutheil D, Rioja-Pastor I, Tallineau C et al (2006) Protective effect of PEG 35,000?Da on renal cells: paradoxical activation of JNK signaling pathway during cold storage. Am J Transplant 6:1529-540 CrossRef
    12. Stefanovich P, Ezzell RM, Sheehan SJ et al (1995) Effects of hypothermia on the function, membrane integrity, and cytoskeletal structure of hepatocytes. Cryobiology 32:389-03 CrossRef
    13. Ohno H, Sakai T, Tsuchida E et al (1981) Interaction of human erythrocyte ghosts or liposomes with polyethylene glycol detected by fluorescence polarization. Biochem Biophys Res Commun 102:426-31 CrossRef
    14. Blois A, Holmsen H, Martino G et al (2006) Interactions of chromogranin A-derived vasostatins and monolayers of phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine. Regul Pept 134:30-7 CrossRef
    15. Broniec A, Gjerde AU, Olmheim AB et al (2007) Trifluoperazine causes a disturbance in glycerophospholipid monolayers containing phosphatidylserine (PS): effects of pH, acyl unsaturation, and proportion of PS. Langmuir 23:694-99 CrossRef
    16. Chap HJ, Zwaal ZR, van Deenen LL (1977) Action of highly purified phospholipases on blood platelets. Evidence for an asymmetric distribution of phospholipids in the surface membrane. Biochim Biophys Acta 467:146-64 CrossRef
    17. Higgins JA, Dawson RM (1977) Asymmetry of the phospholipid bilayer of rat liver endoplasmic reticulum. Biochim Biophys Acta 470:342-56 CrossRef
    18. Wang CT, Shiao YJ, Chen JC et al (1986) Estimation of the phospholipid distribution in the human platelet plasma membrane based on the effect of phospholipase A2 from / Naja nigricollis. Biochim Biophys Acta 856:244-58 CrossRef
    19. Agasosler AV, Tungodden LM, Cejka D et al (2001) Chlorpromazine-induced increase in dipalmitoylphosphatidylserine surface area in monolayers at room temperature. Biochem Pharmacol 61:817-25 CrossRef
    20. Maggio B, Ahkong QF, Lucy JA (1976) Poly(ethylene glycol), surface potential and cell fusion. Biochem J 158:647-50
    21. Vijayalakshmi A, KrishnaKumari VV, Madhusudhana Rao N (1999) Probing polyethylene glycol-phospholipid membrane interactions using enzymes. J Colloid Interface Sci 219:190-94 CrossRef
    22. Rothman JE, Lenard J (1977) Membrane asymmetry. Science 195:743-53 CrossRef
    23. Balasubramanian K, Schroit AJ (2003) Aminophospholipid asymmetry: a matter of life and death. Annu Rev Physiol 65:701-34 CrossRef
    24. Tieleman DP, Marrink SJ, Berendsen HJ (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235-70
    25. Cevc G, Watts A, Marsh D (1980) Non-electrostatic contribution to the titration of the ordered-fluid phase transition of phosphatidylglycerol bilayers. FEBS Lett 120:267-70 CrossRef
    26. de Kruijff B, Cullis PR (1980) The influence of poly(l -lysine) on phospholipid polymorphism. Evidence that electrostatic polypeptide–phospholipid interactions can modulate bilayer/non-bilayer transitions. Biochim Biophys Acta 601:235-40 CrossRef
    27. Huang C, Li S (1999) Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids. Biochim Biophys Acta 1422:273-07
    28. Xu H, Huang CH (1987) Scanning calorimetric study of fully hydrated asymmetric phosphatidylcholines with one acyl chain twice as long as the other. Biochemistry 26:1036-043 CrossRef
    29. Browning JL, Seelig J (1980) Bilayers of phosphatidylserine: a deuterium and phosphorus nuclear magnetic resonance study. Biochemistry 19:1262-270 CrossRef
    30. Huang C, Wang ZQ, Lin HN et al (1994) Interconversion of bilayer phase transition temperatures between phosphatidylethanolamines and phosphatidylcholines. Biochim Biophys Acta 1189:7-2 CrossRef
    31. Wang G, Lin HN, Li S et al (1995) Phosphatidylcholines with sn-1 saturated and sn-2 cis-monounsaturated acyl chains. Their melting behavior and structures. J Biol Chem 270:22738-2746 CrossRef
    32. Maggio B, Lucy JA (1978) Interactions of water-soluble fusogens with phospholipids in monolayers. FEBS Lett 94:301-04 CrossRef
    33. Tilcock CP, Fisher D (1979) Interaction of phospholipid membranes with poly(ethylene glycol)s. Biochim Biophys Acta 557:53-1 CrossRef
    34. Winterhalter M, Burner H, Marzinka S et al (1995) Interaction of poly(ethylene-glycols) with air–water interfaces and lipid monolayers: investigations on surface pressure and surface potential. Biophys J 69:1372-381 CrossRef
    35. Quinn PJ (1988) Effects of temperature on cell membranes. Symp Soc Exp Biol 42:237-58
    36. Hazel JR, Landrey SR (1988) Time course of thermal adaptation in plasma membranes of trout kidney. I. Headgroup composition. Am J Physiol 255:R622–R627
    37. Hazel JR, Landrey SR (1988) Time course of thermal adaptation in plasma membranes of trout kidney. II. Molecular species composition. Am J Physiol 255:R628–R634
  • 作者单位:Delphine Dutheil (1) (2) (5)
    Anja Underhaug Gjerde (4)
    Isabelle Petit-Paris (1) (3)
    Gérard Mauco (1) (2) (3)
    Holm Holmsen (4)

    1. Inserm U927, Poitiers, France
    2. Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France
    5. Hemarina SA, Morlaix, France
    4. Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
    3. CHU Poitiers, Laboratoire de Biochimie et Toxicologie, Poitiers, France
  • ISSN:1864-6166
文摘
Polyethylene glycol (PEG), a high-molecular-weight colloid present in new organ preservation solutions, protects against cold ischemia injuries leading to better graft function of transplanted organs. This protective effect cannot be totally explained by immuno-camouflaging property or signaling-pathway modifications. Therefore, we sought for an alternative mechanism dependent on membrane fluidity. Using the Langmuir–Pockles technique, we show here that PEGs interacted with lipid monolayers of defined composition or constituted by a renal cell lipid extract. High-molecular-weight PEGs stabilized the lipid monolayer at low surface pressure. Paradoxically, at high surface pressure, PEGs destabilized the monolayers. Hypothermia reduced the destabilization of saturated monolayer whereas unsaturated monolayer remained unaffected. Modification of ionic strength and pH induced a stronger stabilizing effect of PEG 35,000?Da which could explain its reported higher effectiveness on cold-induced injuries during organ transplantation. This study sheds a new light on PEG protective effects during organ preservation different from all classical hypotheses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700