EphrinA5 protein distribution in the developing mouse brain
详细信息    查看全文
  • 作者:Claire Deschamps (1)
    Milena Morel (2)
    Thierry Janet (1)
    Guylène Page (2)
    Mohamed Jaber (1)
    Afsaneh Gaillard (1)
    Laetitia Prestoz (1)
  • 刊名:BMC Neuroscience
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:11
  • 期:1
  • 全文大小:4475KB
  • 参考文献:1. Flanagan JG, Vanderhaeghen P: The ephrins and Eph receptors in neural development. / Annu Rev Neurosci 1998, 21:309-45. CrossRef
    2. O'Leary DD, Wilkinson DG: Eph receptors and ephrins in neural development. / Current Opinion in Neurobiology 1999, 9:65-3. CrossRef
    3. Wilkinson DG: Eph receptors and ephrins: regulators of guidance and assembly. / Int Rev Cytol 2000, 196:177-44. CrossRef
    4. Kullander K, Klein RS: Mechanisms and functions of Eph and ephrin signalling. / Nat Rev Mol Cell Biol 2002, 3:475-6. CrossRef
    5. Pasquale EB: Eph receptor signalling casts a wide net on cell behaviour. / Nat Rev Mol Cell Biol 2005, 6:462-75. CrossRef
    6. Himanen JP, Chumley MJ, Lackmann M, Li C, Barton WA, Jeffrey PD, Vearing C, Geleick D, Feldheim DA, Boyd AW, Henkemeyer M, Nikolov DB: Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. / Nat Neurosci 2004, 7:501-09. CrossRef
    7. Pasquale EB: Eph-ephrin promiscuity is now crystal clear. / Nat Neurosci 2004, 7:417-18. CrossRef
    8. Cheng HJ, Nakamoto M, Bergermann AD, Flanagan JG: Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. / Cell 1995, 82:371-81. CrossRef
    9. Zhang JH, Cerretti DP, Yu T, Flanagan JG, Zhou R: Detection of ligands in regions anatomically connected to neurons expressing the Eph receptor Bsk: potential roles in neuron-target interaction. / J Neurosci 1996, 16:7182-192.
    10. Feldheim DA, Kim YI, Bergemann AD, Frisen J, Barbacid M, Flanagan JG: Topographic guidance labels in a sensory projection to the forebrain. / Neuron 1998, 21:1303-313. CrossRef
    11. Carvalho RF, Beutler M, Marler KJ, Kn?ll B, Becker-Barrosso E, Heintzmann R, Ng T, Drescher U: Silencing of EphA3 through a cis interaction with ephrinA5. / Nat Neurosci 2006, 9:322-30. CrossRef
    12. Otal R, Burgaya F, Frisen J, Soriano E, Martinez A: Ephrin-A5 modulates the topographic mapping and connectivity of commissural axons in murine hippocampus. / Neuroscience 2006, 141:109-21. CrossRef
    13. Eberhart J, Swartz ME, Koblar SA, Pasquale EB, Tanaka H, Krull CE: Expression of EphA4, ephrin-A2 and ephrin-A5 during axon outgrowth to the hindlimb indicates potential roles in pathfinding. / Dev Neurosci 2000, 22:237-50. CrossRef
    14. Eberhart J, Barr J, O'Connel S, Flagg A, Swartz ME, Cramer KS, Tosney KW, Pasquale EB, Krull CE: Ephrin-A5 exerts positive or inhibitory effects on distinct subsets of EphA4-positive motor neurons. / J Neurosci 2004, 24:1070-078. CrossRef
    15. Miller K, Kolk SM, Donoghue MJ: EphA7-ephrin-A5 signaling in mouse somatosensory cortex: developmental restriction of molecular domains and postnatal maintenance of functional compartments. / J Comp Neurol 2006, 496:627-42. CrossRef
    16. Cheng HJ, Flanagan JG: Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek receptor tyrosine kinases. / Cell 1994, 79:157-68. CrossRef
    17. Kn?ll B, Isenmann S, Kilic E, Walkenhorst J, Engel S, Wehinger J, B?hr M, Drescher U: A role for the EphA family in the topographic targeting of vomeronasal axons. / Development 2001, 128:895-06.
    18. Cutforth T, Moring L, Mendelhson M, Nemes A, Shah NM, Kim MM, Frisen J, Axel R: Axonal ephrin-As and odorant receptors: coordinate determination of the olfactory sensory map. / Cell 2003, 114:311-22. CrossRef
    19. Passante L, Gaspard N, Degraeve M, Frisen J, Kullander K, De Maertelaer V, Vanderhaeghen P: Temporal regulation of ephrin/Eph signalling is required for the spatial patterning of the mammalian striatum. / Development 2008, 135:3281-290. CrossRef
    20. Cooper MA, Kobayashi K, Zhou R: Ephrin-A5 regulates the formation of the ascending midbrain dopaminergic pathways. / Dev Neurobiol 2009, 69:36-6. CrossRef
    21. Deschamps C, Faideau M, Jaber M, Gaillard A, Prestoz L: Expression of ephrinA5 during development and potential involvement in the guidance of the mesostriatal pathway. / Exp Neurol 2009, 219:466-0. CrossRef
    22. Castellani V, Yue Y, Gao PP, Bolz J: Dual action of a ligand for Eph receptor tyrosine kinases on specific populations of axons during the development of cortical circuits. / J Neurosci 1998, 18:4663-672.
    23. Gao PP, Yue Y, Zhang JH, Cerretti DP, Levitt P, Zhou R: Regulation of thalamic neurite outgrowth by the Eph ligand ephrin-A5: implications in the development of thalamocortical projections. / Proc Natl Acad Sci USA 1998, 95:5329-334. CrossRef
    24. Vanderhaeghen P, Lu Q, Prakash N, Frisen J, Walsh CA, Frostig RD, Flanagan JG: A mapping label required for normal scale of body representation in the cortex. / Nat Neurosci 2000, 3:358-65. CrossRef
    25. Mann F, Peuckert C, Dehner F, Zhou R, Bolz J: Ephrins regulate the formation of terminal axonal arbors during the development of thalamocortical projections. / Development 2002, 129:3945-955.
    26. Dufour A, Seibt J, Passante L, Depaepe V, Ciossek T, Frisen J, Kullander K, Flanagan JG, Polleux F, Vanderhaeghen P: Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes. / Neuron 2003, 39:453-65. CrossRef
    27. Bolz J, Uziel D, Mühlfriedel S, Güllmar A, Peuckert C, Zarbalis K, Wurst W, Torii M, Levitt P: Multiple roles of ephrins during the formation of thalamocortical projections: maps and more. / J Neurobiol 2004, 59:82-4. CrossRef
    28. Donoghue LJ, Lewis RM, Merlie JP, Sanes JR: The Eph kinase ligand AL-1 is expressed by rostral muscles and inhibits outgrowth from caudal neurons. / Mol Cell Neurosci 1996, 8:185-98. CrossRef
    29. Uziel D, Garcez P, Lent R, Peuckert C, Niehage R, Weth F, Bolz J: Connecting thalamus and cortex: The role of ephrins. / Anat Rec A Discov Mol Cell Evol Biol 2006, 288:135-42.
    30. Frisen J, Yates PA, Mclaughlin T, Friedman GC, O'Leary DD, Barbacid M: Ephrin-A5(AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. / Neuron 1998, 20:235-43. CrossRef
    31. Ellsworth CA, Lyckman AW, Feldheim DA, Flanagan JG, Sur M: Ephrin-A2 and -A5 influence patterning of normal and novel retinal projections to the thalamus: conserved mapping mechanisms in visual and auditory thalamic targets. / J Comp Neurol 2005, 488:140-51. CrossRef
    32. Kn?ll B, Drescher U: Ephrin-As as receptors in topographic projections. / Trends Neurosci 2002, 25:145-49. CrossRef
    33. Pfeiffenberger C, Tamada J, Feldheim DA: Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system. / J Neurosci 2006, 26:12873-2884. CrossRef
    34. Peuckert C, Wacker E, Rapus J, Levitt P, Bolz J: Adaptive changes in gene expression patterns in the somatosensory cortex after deletion of ephrinA5. / Mol Cell Neurosci 2008, 39:21-1. CrossRef
    35. St John JA, Pasquale EB, Key B: EphA receptors and ephrin-A ligands exhibit highly regulated spatial and temporal expression patterns in the developing olfactory system. / Brain Res Dev Brain Res 2002, 138:1-4. CrossRef
    36. Bozza T, Feinstein P, Zheng C, Monbaerts P: Odorant receptor expression defines functional units in the mouse olfactory system. / J Neurosci 2002, 22:3033-043.
    37. Hoffpauir BK, Marrs GS, Mathers PH, Spirou GA: Does the brain connect before the periphery can direct? A comparison of three sensory systems in mice. / Brain Res 2009, 1277:115-9. CrossRef
    38. Blanchart A, De Carlos JA, Lopez-Mascaraque L: Time frame of mitral cell development in the mice olfactory bulb. / J Comp Neurol 2006, 496:529-43. CrossRef
    39. Hinds JW, Ruffett TL: Mitral cell development in the mouse olfactory bulb: reorientation of the perikaryon and maturation of the axon initial segment. / J Comp Neurol 1973, 151:281-06. CrossRef
    40. Kudo C, Ajioka I, Hirata Y, Nakajima K: Expression profiles of EphA3 at both the RNA and protein level in the developing mammalian forebrain. / J Comp Neurol 2005, 487:255-69. CrossRef
    41. St John JA, Key B: EphB2 and two of its ligands have dynamic protein expression patterns in the developing olfactory system. / Brain Res Dev Brain Res 2001, 126:43-6. CrossRef
    42. St John JA, Tisay KT, Caras IW, Key B: Expression of EphA5 during development of the olfactory nerve pathway in rat. / J Comp Neurol 2000, 416:540-50. CrossRef
    43. Cooper MA, Crockett DP, Nowakowski RS, Gale NW, Zhou R: Distribution of EphA5 receptor protein in the developing and adult mouse nervous system. / J Comp Neurol 2009, 514:310-28. CrossRef
    44. Drescher U, Kremoser C, Handwerker C, L?schinger J, Noda M, Bonhoeffer F: In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. / Cell 1995, 82:359-70. CrossRef
    45. Schwob JP, Price JL: The development of axonal connections in the central olfactory system of rats. / J Comp Neurol 1984, 223:177-02. CrossRef
    46. Caras IW: A link between axon guidance and axon fasciculation suggested by studies of the tyrosine kinase receptor EphA5/REK7 and its ligand ephrin-A5/AL-1. / Cell Tissue Res 1997, 290:261-64. CrossRef
    47. Mombaerts P: Axonal wiring in the mouse olfactory system. / Annu Rev Cell Dev Biol 2006, 22:713-37. CrossRef
    48. O'Leary DD, Mclaughlin T: Mechanisms of retinotopic map development: Ephs, ephrins, and spontaneous correlated retinal activity. / Prog Brain Res 2005, 147:43-5. CrossRef
    49. Mclaughlin T, O'Leary DD: Molecular gradients and development of retinotopic maps. / Annu Rev Neurosci 2005, 28:327-55. CrossRef
    50. Lemke G, Reber M: Retinotectal mapping: new insights from molecular genetics. / Annu Rev Cell Dev Biol 2005, 21:551-80. CrossRef
    51. Hornberger MR, Dütting D, Ciossek T, Yamada T, Handwerker C, Lang S, Weth F, Huf J, Wessel R, Logan C, Tanaka H, Drescher U: Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons. / Neuron 1999, 22:731-42. CrossRef
    52. Marcus RC, Gale NW, Morrison ME, Mason CA, Yancopoulos GD: Eph family receptors and their ligands distribute in opposing gradients in the developing mouse retina. / Dev Biol 1996, 180:786-89. CrossRef
    53. Brown A, Yates PA, Burrola P, Ortuno D, Vaidya A, Jessell TM, Pfaff SL, O'Leary DDM, Lemke G: Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling. / Cell 2000, 102:77-8. CrossRef
    54. Scicolone G, Ortalli AL, Carri NG: Key roles of Ephs and ephrins in retinotectal topographic map formation. / Brain Res Bull 2009, 79:227-47. CrossRef
    55. Monschau B, Kremoser C, Ohta K, Tanaka H, Kaneko T, Yamada T, Handwerker C, Hornberger MR, L?schinger J, Pasquale EB, Siever DA, Verderame MF, Müller BK, Bonhoeffer F, Drescher U: Shared and distinct functions of RAGS and ELF-1 in guiding retinal axons. / EMBO J 1997, 16:1258-267. CrossRef
    56. Greferath U, Canty AJ, Messenger J, Murphy M: Developmental expression of EphA4-tyrosine kinase receptor in the mouse brain and spinal cord. / Gene Expr Patterns 2002, 2:267-74. CrossRef
    57. Mackarehtschian K, Lau CK, Caras I, MacConnell SK: Regional differences in the developing cerebral cortex revealed by ephrin-A5 expression. / Cereb Cortex 1999, 9:601-10. CrossRef
    58. Auladell C, Pérez-Sust P, Supèr H, Soriano E: The early development of thalamocortical and corticothalamic projections in the mouse. / Anat Embryol 2000, 201:169-79. CrossRef
    59. Torii M, Levitt P: Dissociation of corticothalamic and thalamocortical axon targeting by an EphA7-mediated mechanism. / Neuron 2005, 48:563-75. CrossRef
    60. Janis LS, Cassidy RM, Kromer LF: Ephrin-A binding and EphA receptor expression delineate the matrix compartment of the striatum. / J Neurosci 1999, 19:4962-971.
    61. Gates M, Coupe V, Torres E, Fricker-Gates R, Dunnett S: Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit. / Eur J Neurosci 2004, 19:831-44. CrossRef
    62. Sieber B, Kuzmin A, Canals J, Danielsson A, Paratcha G, Arenas E, Alberch J, Ogren S, Ibanez C: Disruption of EphA/ephrin-A signaling in the nigrostriatal system reduces dopaminergic innervation and dissociates behavioral responses to amphetamine and cocaine. / Mol Cell Neurosci 2004, 26:418-28. CrossRef
    63. Osborn M, Weber K: Immunofluorescence and immunocytochemical procedures with affinity purified antibodies: tubulin-containing structures. / Methods Cell Biol 1982, 24:97-32. CrossRef
    64. Baschong W, Suetterlin R, Laeng RH: Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM). / J Histochem Cytochem 2001, 49:1565-572.
    65. Jacobowitz DM, Abbott LC: / Chemoarchitectonic atlas of the developing mouse brain. CRC Press Inc; 1998.
    66. Schambra UB: / Atlas of the prenatal mouse brain. Heidelberg: Springer Press; 2008. CrossRef
  • 作者单位:Claire Deschamps (1)
    Milena Morel (2)
    Thierry Janet (1)
    Guylène Page (2)
    Mohamed Jaber (1)
    Afsaneh Gaillard (1)
    Laetitia Prestoz (1)

    1. Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, 40 avenue du Recteur Pineau, F-86022, France
    2. GReViC EA3808, Université de Poitiers, CNRS, 40 avenue du Recteur Pineau, F-86022, France
文摘
Background EphrinA5 is one of the best-studied members of the Eph-ephrin family of guidance molecules, known to be involved in brain developmental processes. Using in situ hybridization, ephrinA5 mRNA expression has been detected in the retinotectal, the thalamocortical, and the olfactory systems; however, no study focused on the distribution of the protein. Considering that this membrane-anchored molecule may act far from the neuron soma expressing the transcript, it is of a crucial interest to localize ephrinA5 protein to better understand its function. Results Using immunohistochemistry, we found that ephrinA5 protein is highly expressed in the developing mouse brain from E12.5 to E16.5. The olfactory bulb, the cortex, the striatum, the thalamus, and the colliculi showed high intensity of labelling, suggesting its implication in topographic mapping of olfactory, retinocollicular, thalamocortical, corticothalamic and mesostriatal systems. In the olfactory nerve, we found an early ephrinA5 protein expression at E12.5 suggesting its implication in the guidance of primary olfactory neurons into the olfactory bulb. In the thalamus, we detected a dynamic graduated protein expression, suggesting its role in the corticothalamic patterning, whereas ephrinA5 protein expression in the target region of mesencephalic dopaminergic neurones indicated its involvement in the mesostriatal topographic mapping. Following E16.5, the signal faded gradually and was barely detectable at P0, suggesting a main role for ephrinA5 in primary molecular events in topographic map formation. Conclusion Our work shows that ephrinA5 protein is expressed in restrictive regions of the developing mouse brain. This expression pattern points out the potential sites of action of this molecule in the olfactory, retinotectal, thalamocortical, corticothalamic and mesostriatal systems, during development. This study is essential to better understand the role of ephrinA5 during developmental topographic mapping of connections and to further characterise the mechanisms involved in pathway restoration following cell transplantation in the damaged brain.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700