Discovery and analysis of consistent active sub-networks in cancers
详细信息    查看全文
  • 作者:Raj K Gaire (1) (2)
    Lorey Smith (3)
    Patrick Humbert (3)
    James Bailey (1)
    Peter J Stuckey (1)
    Izhak Haviv (4) (5)
  • 刊名:BMC Bioinformatics
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:14
  • 期:2-supp
  • 全文大小:1076KB
  • 参考文献:1. McDermott U, Downing JR, Stratton MR: Genomics and the Continuum of Cancer Care. / N Engl J Med 2011,364(January 27):340鈥?0.
    2. Lai Y, Eckenrode SE, She J: A statistical framework for integrating two microarray data sets in differencial expression analysis. / BMC Bioinformatics 2009,10(Suppl 1):S23. CrossRef
    3. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JKV, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PVK, Ballinger DG, Sparks AB, Hartigan J, Smith DR, Suh E, Papadopoulos N, Buckhaults P, Markowitz SD, Parmigiani G, Kinzler KW, Velculescu VE, Vogelstein B: The Genomic Landscapes of Human Breast and Colorectal Cancers. / Science 2007,318(5853):1108鈥?3. CrossRef
    4. Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM, Buck G, Chen L, Beare D, Latimer C, Widaa S, Hinton J, Fahey C, Fu B, Swamy S, Dalgliesh GL, Teh BT, Deloukas P, Yang F, Campbell PJ, Futreal PA, Stratton MR: Signatures of mutation and selection in the cancer genome. / Nature 2010,463(18 February):893鈥?. CrossRef
    5. Jordan CT, Guzman ML, Noble M: Cancer Stem Cells. / N Engl J Med 2006, 355:1253鈥?1. CrossRef
    6. Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. / Nature 2001, 414:105鈥?1. CrossRef
    7. Thiery JP, Acloque H, Huang RY, Nieto MA: Epithelial-Mesenchymal Transitions in Development and Disease. / Cell 2009,139(5):871鈥?0. j.cell.2009.11.007">CrossRef
    8. Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT, Pergamenschikov A, Williams CF, Zhu SX, Lee JCF, Lashkari D, Shalon D, Brown PO, Botstein D: Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. / PNAS 1999,96(16):9212鈥?7. CrossRef
    9. Ideker T, Sharan R: Protein networks in disease. / Genome Res 2008,18(4):644鈥?2. CrossRef
    10. Ideker T, Ozier O, Schwikowski B, Siegel AF: Discovering regulatory and signaling circuits in molecular interaction networks. / Bioinformatics 2002, 18:S233鈥?0. CrossRef
    11. Sohler F, Hanisch D, Zimmer R: New methods for joint analysis of biological networks and expression data. / Bioinformatics 2004, 20:1517鈥?1. CrossRef
    12. Rajagopalan D, Agarwal P: Inferring pathways from gene lists using a literature-derived network of biological relationships. / Bioinformatics 2005,21(6):788鈥?93. CrossRef
    13. Scott MS, Perkins T, Bunnell S, Pepin F, Thomas DY, Hallett M: Identifying Regulatory Subnetworks for a Set of Genes. / Molecular & Cellular Proteomics 2005, 4:683鈥?92. CrossRef
    14. Guo Z, Li Y, Gong X, Yao C, Ma W, Wang D, Li Y, Zhu J, Zhang M, Yang D, Wang J: Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction sub-network. / Bioinformatics 2007,23(16):2121鈥?128. CrossRef
    15. Dittrich MT, Klau GW, Rosenwald A, Dandekar T, M眉ller T: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. / Bioinformatics 2008,24(ISMB 2008):i223-i231. CrossRef
    16. Ulitsky I, Shamir R: Identifying functional modules using expression profiles and confidence-scored protein interactions. / Bioinformatics 2009,25(9):1158鈥?4. CrossRef
    17. Deshpande R, Sharma S, Verfaillie CM, Hu WS, Myers CL: A scalable approach for discovering conserved active subnetworks across species. / PLoS Computational Biology 2010,6(12):e1001028. journal.pcbi.1001028">CrossRef
    18. Prieto C, Rivas JDL: APID: Agile Protein Interaction DataAnalyzer. / Nucleic Acids Research 2006,34(Web Server):W298-W302. CrossRef
    19. Finley R: / A Guide to Yeast Two-Hybrid Experiments. / Volume 24. Cambridge, MA: Cell Press; 2007:17鈥?1. chap. 5
    20. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C: STRING 8-a global view on proteins and their functional interactions in 630 organisms. / Nucleic Acids Res 2009, 37:D412-D416. CrossRef
    21. Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. / Genome Research 2003,13(11):2498鈥?04. CrossRef
    22. Ulitsky I, Shamir R: Identification of functional modules using network topology and high-throughput data. / BMC Syst Biol 2007, 1:8. open access CrossRef
    23. Zhang B, Horvath S: A General Framework for Weighted Gene Co-Expression Network Analysis. / Stat Appl Genet Mol Biol 2005, 4:Article17.
    24. Iliopoulos D, Hirsch HA, Struhl K: An Epigenetic Switch Involving NF-kB, Lin28, Let-7 MicroRNA, and IL6 Links Inammation to Cell Transformation. / Cell 2009, 139:693鈥?06. j.cell.2009.10.014">CrossRef
    25. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to ionizing radiation response. / PNAS 2001, 98:5116鈥?1. CrossRef
    26. The Cancer Genome Atlas Group: The Cancer Genome Atlas data browser. [jsp" class="a-plus-plus">http://tcga002Dportal.nci.nih.gov/tcga-portal/AnomalySearch.jsp] 2011.
    27. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O'Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN: Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. / Cancer Cell 2010, 17:98鈥?10. j.ccr.2009.12.020">CrossRef
    28. The UniProt Consortium: The Universal Protein Resource. / Nucl Acids Res 2010,38(4):D142鈥?. CrossRef
    29. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, van Gelder MEM, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA: Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. / Lancet 2005,365(9460):671鈥?.
    30. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V, Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M: Genome-wide analysis of estrogen receptor binding sites. / Nat Genet 2006,38(11):1289鈥?7. CrossRef
    31. Edgar R, Domrachev M, Lash A: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. / Nucleic Acids Research 2002, 30:207鈥?0. CrossRef
    32. The Cancer Genome Atlas Group: The Cancer Genome Atlas website. [http://tcga-data.nci.nih.gov/tcga/] 2011.
    33. Croesa D, Couche F, Wodak SJ, van Helden J: Inferring Meaningful Pathways in Weighted Metabolic Networks. / J Mol Biol 2006, 356:222鈥?36. j.jmb.2005.09.079">CrossRef
    34. Faust K, Dupont P, Callut J, van Helden J: Pathway discovery in metabolic networks by subgraph extraction. / Bioinformatics 2010,26(9):1211鈥?218. CrossRef
    35. Dezs艖 Z, Nikolsky Y, Nikolskaya T, Miller J, Cherba D, Webb C, Bugrim A: Identifying disease-specific genes based on their topological significance in protein networks. / BMC Syst Biol 2009, 3:36. CrossRef
  • 作者单位:Raj K Gaire (1) (2)
    Lorey Smith (3)
    Patrick Humbert (3)
    James Bailey (1)
    Peter J Stuckey (1)
    Izhak Haviv (4) (5)

    1. NICTA, Victoria Laboratory and Department of Computing and Information Systems, University of Melbourne, Parkville, Vic, 3010, Australia
    2. Metabolomics, Population Studies and Profiling, Baker IDI Heart and Diabetes Institute, Melbourne, Vic, 3004, Australia
    3. Cell Cycle & Cancer Genetics, Peter MacCallum Cancer Centre, Melbourne, Vic, 3002, Australia
    4. Department of Pathology, School of Medicine, University of Melbourne, Parkville, Vic, 3010, Australia
    5. Faculty of Medicine in Galilee, Bar Ilan University, Kragujevac, Israel
  • ISSN:1471-2105
文摘
Gene expression profiles can show significant changes when genetically diseased cells are compared with non-diseased cells. Biological networks are often used to identify active subnetworks (ASNs) of the diseases from the expression profiles to understand the reason behind the observed changes. Current methodologies for discovering ASNs mostly use undirected PPI networks and node centric approaches. This can limit their ability to find the meaningful ASNs when using integrated networks having comprehensive information than the traditional protein-protein interaction networks. Using appropriate scoring functions to assess both genes and their interactions may allow the discovery of better ASNs. In this paper, we present CASNet, which aims to identify better ASNs using (i) integrated interaction networks (mixed graphs), (ii) directions of regulations of genes, and (iii) combined node and edge scores. We simplify and extend previous methodologies to incorporate edge evaluations and lessen their sensitivity to significance thresholds. We formulate our objective functions using mixed integer programming (MIP) and show that optimal solutions may be obtained. We compare the ASNs obtained by CASNet and similar other approaches to show that CASNet can often discover more meaningful and stable regulatory ASNs. Our analysis of a breast cancer dataset finds that the positive feedback loops across 7 genes, AR, ESR1, MYC, E2F2, PGR, BCL2 and CCND1 are conserved across the basal/triple negative subtypes in multiple datasets that could potentially explain the aggressive nature of this cancer subtype. Furthermore, comparison of the basal subtype of breast cancer and the mesenchymal subtype of glioblastoma ASNs shows that an ASN in the vicinity of IL6 is conserved across the two subtypes. This result suggests that subtypes of different cancers can show molecular similarities indicating that the therapeutic approaches in different types of cancers may be shared.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700