Summary of session C1: pulsar timing arrays
详细信息    查看全文
  • 作者:R. M. Shannon (1)
    S. Chamberlin (2)
    N. J. Cornish (3)
    J. A. Ellis (2)
    C. M. F. Mingarelli (4)
    D. Perrodin (5)
    P. Rosado (6)
    A. Sesana (6)
    S. R. Taylor (7)
    L. Wen (8)
    C. G. Bassa (9)
    J. Gair (7)
    G. H. Janssen (9)
    R. Karuppusamy (10)
    M. Kramer (10)
    K. J. Lee (10)
    K. Liu (11)
    I. Mandel (4)
    M. Purver (9)
    T. Sidery (4)
    R. Smits (12)
    B. W. Stappers (9)
    A. Vecchio (4)
  • 关键词:Gravitational waves ; Pulsars
  • 刊名:General Relativity and Gravitation
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:46
  • 期:8
  • 全文大小:198 KB
  • 参考文献:1. Sesana, A., Vecchio, A., Colacino, C.N.: The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with pulsar timing arrays. MNRAS 390, 192 (2008) j.1365-2966.2008.13682.x" target="_blank" title="It opens in new window">CrossRef
    2. Sesana, A.: Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band. MNRAS 433, 1 (2013) CrossRef
    3. McConnell, N.J., Ma, C.-P.: Revisiting the scaling relations of black hole masses and host galaxy properties. Astrophys. J. 764, 184 (2013) CrossRef
    4. Hlavacek-Larrondo, J., et al.: On the hunt for ultramassive black holes in brightest cluster galaxies. MNRAS 424, 224 (2012) j.1365-2966.2012.21187.x" target="_blank" title="It opens in new window">CrossRef
    5. Shannon, R.M., et al.: Gravitational-wave limits from pulsar timing constrain supermassive black hole evolution. Science 342, 334 (2013) CrossRef
    6. van Haasteren, R., Levin, Y., McDonald, P., Lu, T.: On measuring the gravitational-wave background using pulsar timing arrays. MNRAS 395, 1005 (2009) j.1365-2966.2009.14590.x" target="_blank" title="It opens in new window">CrossRef
    7. 脰lmez, S., Mandic, V., Siemens, X.: Gravitational-wave stochastic background from kinks and cusps on cosmic strings. Phys. Rev. D 81, 104028 (2010) CrossRef
    8. Starobinski菒, A.A.: Spectrum of relict gravitational radiation and the early state of the universe. Sov. J. Exp. Theor. Phys. Lett. 30, 682 (1979)
    9. Caprini, C., Durrer, R., Siemens, X.: Detection of gravitational waves from the QCD phase transition with pulsar timing arrays. Phys. Rev. D 82, 063511 (2010) CrossRef
    10. Jaffe, A.H., Backer, D.C.: Gravitational waves probe the coalescence rate of massive black hole binaries. Astrophys. J. 583, 616 (2003) CrossRef
    11. Sesana, A., Vecchio, A., Volonteri, M.: Gravitational waves from resolvable massive black hole binary systems and observations with pulsar timing arrays. MNRAS 394, 2255 (2009) j.1365-2966.2009.14499.x" target="_blank" title="It opens in new window">CrossRef
    12. Detweiler, S.: Pulsar timing measurements and the search for gravitational waves. Astrophys. J. 234, 1100 (1979) CrossRef
    13. Hellings, R.W., Downs, G.S.: Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys. J. 265, L39 (1983) CrossRef
    14. Anholm, M., Ballmer, S., Creighton, J.D.E., Price, L.R., Siemens, X.: Optimal strategies for gravitational wave stochastic background searches in pulsar timing data. Phys. Rev. D 79, 084030 (2009) CrossRef
    15. Wen, L., Chen, Y.: Geometrical expression for the angular resolution of a network of gravitational-wave detectors. Phys. Rev. D 81, 082001 (2010) CrossRef
    16. Boyle, L., Pen, U.-L.: Pulsar timing arrays as imaging gravitational wave telescopes: angular resolution and source (de)confusion. Phys. Rev. D 86, 124028 (2012) CrossRef
    17. Wen, L., Schutz, B.F.: Coherent network detection of gravitational waves: the redundancy veto. Class. Quantum Gravit. 22, 1321 (2005) CrossRef
    18. Chatterji, S., et al.: Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise. Phys. Rev. D 74, 082005 (2006) CrossRef
    19. Wen, L.: Data analysis of gravitational waves using a network of detectors. Int. J. Mod. Phys. D 17, 1095 (2008) CrossRef
    20. Ellis, J.A.: A Bayesian analysis pipeline for continuous GW sources in the PTA band. Class. Quantum Gravit. 30, 224004 (2013) CrossRef
    21. Ellis, J.A., Siemens, X., Creighton, J.D.E.: Optimal strategies for continuous gravitational wave detection in pulsar timing arrays. Astrophys. J. 756, 175 (2012) CrossRef
    22. Manchester, R.N., et al.: The parkes pulsar timing array project. PASA 30, 17 (2013) CrossRef
    23. Ferdman, R.D., et al.: The European pulsar timing array: current efforts and a LEAP toward the future. Class. Quantum Gravit. 27, 084014 (2010) CrossRef
    24. Hobbs, G., et al.: The international pulsar timing array project: using pulsars as a gravitational wave detector. Class. Quantum Gravit 27, 084013 (2010) CrossRef
    25. Demorest, P.B., et al.: Limits on the stochastic gravitational wave background from the North American nanohertz observatory for gravitational waves. Astrophys. J. 762, 94 (2013) CrossRef
    26. Mingarelli, C.M.F., Sidery, T., Mandel, I., Vecchio, A.: Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays. Phys. Rev. D 88(8), 062005 (2013) CrossRef
    27. Taylor, S.R., Gair, J.R.: Searching for anisotropic gravitational-wave backgrounds using pulsar timing arrays. Phys. Rev. D 88(8), 084001 (2013) CrossRef
    28. van Haasteren, R.: Accelerating pulsar timing data analysis. Mon. Not. R. Astron. Soc. 429, 55鈥?2 (2013) CrossRef
    29. Ravi, V., Wyithe, J.S.B., Hobbs, G., et al.: Does a 鈥渟tochastic鈥?background of gravitational waves exist in the pulsar timing band? Astrophys. J. 761, 84 (2012) CrossRef
    30. Hobbs, G.B., Edwards.: The Australia Telescope Compact Array (/ Parkes radio telescope / Mopra radio telescope / Long Baseline Array) is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. R. T., & Manchester, R. N. 2006, MNRAS, 369, 655
    31. Cornish, N.J., Sesana, A.: Pulsar timing array analysis for black hole backgrounds. Class. Quantum Gravit. 30, 224005 (2013) CrossRef
    32. Corbin, V., Cornish, N.J.: Pulsar timing array observations of massive black hole binaries arXiv:1008.1782 (2010)
    33. Deng, X., Finn, L.S.: Pulsar timing array observations of gravitational wave source timing parallax. MNRAS 414, 50 (2011) j.1365-2966.2010.17913.x" target="_blank" title="It opens in new window">CrossRef
    34. Lee, K.J., et al.: Gravitational wave astronomy of single sources with a pulsar timing array. MNRAS 414, 3251 (2011) j.1365-2966.2011.18622.x" target="_blank" title="It opens in new window">CrossRef
    35. Rosado, P.A., Sesana, A.: Targeting supermassive black hole binaries and gravitational wave sources for the pulsar timing array. MNRAS, arXiv:1311.0883 (2013, submitted to)
    36. York, D.G., et al.: The sloan digital sky survey: technical summary. Astrophys. J. 120, 1579 (2000)
    37. Abazajian, K., et al.: The seventh data release of the sloan digital sky survey. Astrophys. J. Suppl. 182, 543 (2009) CrossRef
    38. Springel, V., et al.: Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629 (2005) CrossRef
    39. Guo, Q., et al.: From dwarf spheroidals to cD galaxies: simulating the galaxy population in a \(\Lambda \) CDM cosmology. MNRAS 413, 101 (2011) j.1365-2966.2010.18114.x" target="_blank" title="It opens in new window">CrossRef
    40. Ellison, S.L., et al.: Galaxy pairs in the Sloan Digital Sky Survey- VIII. The observational properties of post-merger galaxies. MNRAS 435, 3627 (2013) CrossRef
    41. Hobbs, G., et al.: Development of a pulsar-based time-scale. MNRAS 427, 2780 (2012) j.1365-2966.2012.21946.x" target="_blank" title="It opens in new window">CrossRef
    42. McWilliams, S.T., Ostriker, J.P., Pretorius, F.: Gravitational waves and stalled satellites from massive galaxy mergers at \(z \le 1\) . arXiv:1211.5377 (2012)
  • 作者单位:R. M. Shannon (1)
    S. Chamberlin (2)
    N. J. Cornish (3)
    J. A. Ellis (2)
    C. M. F. Mingarelli (4)
    D. Perrodin (5)
    P. Rosado (6)
    A. Sesana (6)
    S. R. Taylor (7)
    L. Wen (8)
    C. G. Bassa (9)
    J. Gair (7)
    G. H. Janssen (9)
    R. Karuppusamy (10)
    M. Kramer (10)
    K. J. Lee (10)
    K. Liu (11)
    I. Mandel (4)
    M. Purver (9)
    T. Sidery (4)
    R. Smits (12)
    B. W. Stappers (9)
    A. Vecchio (4)

    1. CSIRO Astronomy and Space Science, Epping, Australia
    2. University of Wisconsin, Milwaukee, WI, USA
    3. Montana State University, Bozeman, MT, USA
    4. University of Birmingham, Birmingham, UK
    5. Osservatorio Astronomico di Cagliari, Cagliari, Italy
    6. Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam, Germany
    7. University of Cambridge, Cambridge, UK
    8. University of Western Australia, Crawley, Australia
    9. Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester, UK
    10. Max Planck Institute for Radio Astronomy, Bonn, Germany
    11. CNRS, Nan莽ay Observatory, Orleans, France
    12. ASTRON, Dwingeloo, The Netherlands
  • ISSN:1572-9532
文摘
This paper summarizes parallel session C1: Pulsar Timing Arrays of the Amaldi10/GR20 Meeting held in Warsaw, Poland in July 2013. The session showcased recent results from pulsar timing array collaborations, advances in modelling the gravitational-wave signal, and new methods to search for and characterize gravitational waves in pulsar timing array observations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700