An integrated analysis of the SOX2 microRNA response program in human pluripotent and nullipotent stem cell lines
详细信息    查看全文
  • 作者:Sebastian F Vencken (1) (2)
    Praveen Sethupathy (3)
    Gordon Blackshields (1) (2)
    Cathy Spillane (1) (2)
    Salah Elbaruni (1) (2)
    Orla Sheils (1) (2)
    Michael F Gallagher (1) (2)
    John J O鈥橪eary (1) (2)

    1. Department of Histopathology
    ; Trinity College Dublin ; Sir Patrick Dun Research Laboratory ; St. James鈥檚 Hospital ; Dublin ; Ireland
    2. The Coombe Women and Infants University Hospital
    ; Dublin ; Ireland
    3. Department of Genetics
    ; University of North Carolina at Chapel Hill ; Chapel Hill ; North Carolina ; USA
  • 关键词:SOX2 ; microRNA ; Embryonic stem cell ; Embryonal carcinoma ; Pluripotency ; EMT
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,450 KB
  • 参考文献:1. Fang, X, Yoon, J-G, Li, L, Yu, W, Shao, J, Hua, D, Zheng, S, Hood, L, Goodlett, DR, Foltz, G, Lin, B (2011) The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis. BMC Genomics 12: pp. 11
    2. Fang, X, Yu, W, Li, L, Shao, J, Zhao, N, Chen, Q, Ye, Z, Lin, S-C, Zheng, S, Lin, B (2010) ChIP-seq and functional analysis of the SOX2 gene in colorectal cancers. OMICS 14: pp. 369-384
    3. Han, X, Fang, X, Lou, X, Hua, D, Ding, W, Foltz, G, Hood, L, Yuan, Y, Lin, B (2012) Silencing SOX2 induced mesenchymal-epithelial transition and its expression predicts liver and lymph node metastasis of CRC patients. PLoS One 7: pp. e41335
    4. Clark, AT (2007) The stem cell identity of testicular cancer. Stem Cell Rev 3: pp. 49-59
    5. Girouard, SD, Laga, AC, Mihm, MC, Scolyer, RA, Thompson, JF, Zhan, Q, Widlund, HR, Lee, C-W, Murphy, GF (2012) SOX2 contributes to melanoma cell invasion. Lab Invest 92: pp. 362-370
    6. Mak, VCY, Siu, MKY, Wong, OGW, Chan, KKL, Ngan, HYS, Cheung, ANY (2012) Dysregulated stemness-related genes in gynecological malignancies. Histol Histopathol 27: pp. 1121-1130
    7. Liu, K, Lin, B, Zhao, M, Yang, X, Chen, M, Gao, A, Liu, F, Que, J, Lan, X (2013) The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cell Signal 25: pp. 1264-1271
    8. Masui, S, Nakatake, Y, Toyooka, Y, Shimosato, D, Yagi, R, Takahashi, K, Okochi, H, Okuda, A, Matoba, R, Sharov, AA, Ko, MSH, Niwa, H (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9: pp. 625-635
    9. Ivanova, N, Dobrin, R, Lu, R, Kotenko, I, Levorse, J, DeCoste, C, Schafer, X, Lun, Y, Lemischka, IR (2006) Dissecting self-renewal in stem cells with RNA interference. Nature 442: pp. 533-538
    10. Sun, C, Sun, L, Li, Y, Kang, X, Zhang, S, Liu, Y (2013) Sox2 expression predicts poor survival of hepatocellular carcinoma patients and it promotes liver cancer cell invasion by activating Slug. Med Oncol 30: pp. 503
    11. Boyer, LA, Lee, TI, Cole, MF, Johnstone, SE, Levine, SS, Zucker, JP, Guenther, MG, Kumar, RM, Murray, HL, Jenner, RG, Gifford, DK, Melton, DA, Jaenisch, R, Young, RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122: pp. 947-956
    12. Lister, R, Pelizzola, M, Dowen, RH, Hawkins, RD, Hon, G, Tonti-Filippini, J, Nery, JR, Lee, L, Ye, Z, Ngo, Q-M, Edsall, L, Antosiewicz-Bourget, J, Stewart, R, Ruotti, V, Millar, AH, Thomson, JA, Ren, B, Ecker, JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462: pp. 315-322
    13. Takahashi, K, Yamanaka, S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: pp. 663-676
    14. Sperger, JM, Chen, X, Draper, JS, Antosiewicz, JE, Chon, CH, Jones, SB, Brooks, JD, Andrews, PW, Brown, PO, Thomson, JA (2003) Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci U S A 100: pp. 13350-13355
    15. Kashyap, V, Rezende, NC, Scotland, KB, Shaffer, SM, Persson, JL, Gudas, LJ, Mongan, NP (2009) Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 18: pp. 1093-1108
    16. Otsubo, T, Akiyama, Y, Yanagihara, K, Yuasa, Y (2008) SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis. Br J Cancer 98: pp. 824-831
    17. Li, X-L, Eishi, Y, Bai, Y-Q, Sakai, H, Akiyama, Y, Tani, M, Takizawa, T, Koike, M, Yuasa, Y (2004) Expression of the SRY-related HMG box protein SOX2 in human gastric carcinoma. Int J Oncol 24: pp. 257-263
    18. Otsubo, T, Akiyama, Y, Hashimoto, Y, Shimada, S, Goto, K, Yuasa, Y (2011) MicroRNA-126 Inhibits SOX2 Expression and Contributes to Gastric Carcinogenesis. PLoS One 6: pp. e16617
    19. Bartel, DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: pp. 281-297
    20. Gunaratne, PH (2009) Embryonic stem cell microRNAs: defining factors in induced pluripotent (iPS) and cancer (CSC) stem cells?. Curr Stem Cell Res Ther 4: pp. 168-177
    21. Palmer, RD, Murray, MJ, Saini, HK, van Dongen, S, Abreu-Goodger, C, Muralidhar, B, Pett, MR, Thornton, CM, Nicholson, JC, Enright, AJ, Coleman, N (2010) Malignant Germ Cell Tumors Display Common MicroRNA Profiles Resulting in Global Changes in Expression of Messenger RNA Targets. Cancer Res 70: pp. 2911-2923
    22. Cimadamore, F, Fishwick, K, Giusto, E, Gnedeva, K, Cattarossi, G, Miller, A, Pluchino, S, Brill, LM, Bronner-Fraser, M, Terskikh, AV (2011) Human ESC-Derived Neural Crest Model Reveals a Key Role for SOX2 in Sensory Neurogenesis. Cell Stem Cell 8: pp. 538-551
    23. Greber, B, Lehrach, H, Adjaye, J (2007) Silencing of core transcription factors in human EC cells highlights the importance of autocrine FGF signaling for self-renewal. BMC Dev Biol 7: pp. 46
    24. Peterson, KA, Nishi, Y, Ma, W, Vedenko, A, Shokri, L, Zhang, X, McFarlane, M, Baizabal, J-M, Junker, JP, van Oudenaarden, A, Mikkelsen, T, Bernstein, BE, Bailey, TL, Bulyk, ML, Wong, WH, McMahon, AP (2012) Neural-specific Sox2 input and differential Gli-binding affinity provide context and positional information in Shh-directed neural patterning. Genes Dev 26: pp. 2802-2816
    25. Bergsland, M, Ramsk枚ld, D, Zaouter, C, Klum, S, Sandberg, R, Muhr, J (2011) Sequentially acting Sox transcription factors in neural lineage development. Genes Dev 25: pp. 2453-2464
    26. Marson, A, Levine, SS, Cole, MF, Frampton, GM, Brambrink, T, Johnstone, S, Guenther, MG, Johnston, WK, Wernig, M, Newman, J, Calabrese, JM, Dennis, LM, Volkert, TL, Gupta, S, Love, J, Hannett, N, Sharp, PA, Bartel, DP, Jaenisch, R, Young, RA (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134: pp. 521-533
    27. Guo, H, Ingolia, NT, Weissman, JS, Bartel, DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466: pp. 835-840
    28. Baek, D, Vill茅n, J, Shin, C, Camargo, FD, Gygi, SP, Bartel, DP (2008) The impact of microRNAs on protein output. Nature 455: pp. 64-71
    29. Guimbellot, JS, Erickson, SW, Mehta, T, Wen, H, Page, GP, Sorscher, EJ, Hong, JS (2009) Correlation of microRNA levels during hypoxia with predicted target mRNAs through genome-wide microarray analysis. BMC Med Genomics 2: pp. 15
    30. Nunez-Iglesias, J, Liu, C-C, Morgan, TE, Finch, CE, Zhou, XJ (2010) Joint Genome-Wide Profiling of miRNA and mRNA Expression in Alzheimer鈥檚 Disease Cortex Reveals Altered miRNA Regulation. PLoS One 5: pp. e8898
    31. Shahab, SW, Matyunina, LV, Mezencev, R, Walker, LD, Bowen, NJ, Benigno, BB, McDonald, JF (2011) Evidence for the Complexity of MicroRNA-Mediated Regulation in Ovarian Cancer: A Systems Approach. PLoS One 6: pp. e22508
    32. Ambs, S, Prueitt, RL, Yi, M, Hudson, RS, Howe, TM, Petrocca, F, Wallace, TA, Liu, C-G, Volinia, S, Calin, GA, Yfantis, HG, Stephens, RM, Croce, CM (2008) Genomic Profiling of MicroRNA and Messenger RNA Reveals Deregulated MicroRNA Expression in Prostate Cancer. Cancer Res 68: pp. 6162-6170
    33. Selbach, M, Schwanh盲usser, B, Thierfelder, N, Fang, Z, Khanin, R, Rajewsky, N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455: pp. 58-63
    34. Dmitriev, P, Barat, A, Polesskaya, A, O鈥機onnell, MJ, Robert, T, Dessen, P, Walsh, TA, Lazar, V, Turki, A, Carnac, G, Laoudj-Chenivesse, D, Lipinski, M, Vassetzky, YS (2013) Simultaneous miRNA and mRNA transcriptome profiling of human myoblasts reveals a novel set of myogenic differentiation-associated miRNAs and their target genes. BMC Genomics 14: pp. 265
    35. Ma, L, Huang, Y, Zhu, W, Zhou, S, Zhou, J, Zeng, F, Liu, X, Zhang, Y, Yu, J (2011) An Integrated Analysis of miRNA and mRNA Expressions in Non-Small Cell Lung Cancers. PLoS One 6: pp. e26502
    36. Su, W-L, Kleinhanz, RR, Schadt, EE (2011) Characterizing the role of miRNAs within gene regulatory networks using integrative genomics techniques. Mol Syst Biol 7: pp. 490
    37. Pal, R, Ravindran, G (2006) Assessment of pluripotency and multilineage differentiation potential of NTERA-2 cells as a model for studying human embryonic stem cells. Cell Prolif 39: pp. 585-598
    38. Josephson, R, Ording, CJ, Liu, Y, Shin, S, Lakshmipathy, U, Toumadje, A, Love, B, Chesnut, JD, Andrews, PW, Rao, MS, Auerbach, JM (2007) Qualification of embryonal carcinoma 2102Ep as a reference for human embryonic stem cell research. Stem Cells 25: pp. 437-446
    39. Schwartz, CM, Spivak, CE, Baker, SC, McDaniel, TK, Loring, JF, Nguyen, C, Chrest, FJ, Wersto, R, Arenas, E, Zeng, X, Freed, WJ, Rao, MS (2005) NTera2: a model system to study dopaminergic differentiation of human embryonic stem cells. Stem Cells Dev 14: pp. 517-534
    40. Hovatta, O, Jaconi, M, T枚h枚nen, V, B茅na, F, Gimelli, S, Bosman, A, Holm, F, Wyder, S, Zdobnov, EM, Irion, O, Andrews, PW, Antonarakis, SE, Zucchelli, M, Kere, J, Feki, A (2010) A Teratocarcinoma-Like Human Embryonic Stem Cell (hESC) Line and Four hESC Lines Reveal Potentially Oncogenic Genomic Changes. PLoS One 5: pp. e10263
    41. Andrews, PW, Fenderson, B, Hakomori, S (1987) Human embryonal carcinoma cells and their differentiation in culture. Int J Androl 10: pp. 95-104
    42. Yang, S, Lin, G, Deng, L, Lu, G-X (2012) Tumourigenic characteristics of embryonal carcinoma cells as a model for studying tumour progression of human embryonic stem cells. Cell Prolif 45: pp. 299-310
    43. Liu, Y, Shin, S, Zeng, X, Zhan, M, Gonzalez, R, Mueller, F-J, Schwartz, CM, Xue, H, Li, H, Baker, SC, Chudin, E, Barker, DL, McDaniel, TK, Oeser, S, Loring, JF, Mattson, MP, Rao, MS (2006) Genome wide profiling of human embryonic stem cells (hESCs), their derivatives and embryonal carcinoma cells to develop base profiles of U.S. Federal government approved hESC lines. BMC Dev Biol 6: pp. 20
    44. Kozomara, A, Griffiths-Jones, S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39: pp. D152-D157
    45. Stadler, B, Ivanovska, I, Mehta, K, Song, S, Nelson, A, Tan, Y, Mathieu, J, Darby, C, Blau, CA, Ware, C, Peters, G, Miller, DG, Shen, L, Cleary, MA, Ruohola-Baker, H (2010) Characterization of microRNAs involved in embryonic stem cell states. Stem Cells Dev 19: pp. 935-950
    46. Xie, B, Ding, Q, Han, H, Wu, D (2013) miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics 29: pp. 638-644
    47. Stone, N, Pangilinan, F, Molloy, AM, Shane, B, Scott, JM, Ueland, PM, Mills, JL, Kirke, PN, Sethupathy, P, Brody, LC (2011) Bioinformatic and Genetic Association Analysis of MicroRNA Target Sites in One-Carbon Metabolism Genes. PLoS One 6: pp. e21851
    48. Vickers, KC, Shoucri, BM, Levin, MG, Wu, H, Pearson, DS, Osei-Hwedieh, D, Collins, FS, Remaley, AT, Sethupathy, P (2013) MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology 57: pp. 533-542
    49. Huang, DW, Sherman, BT, Lempicki, RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: pp. 44-57
    50. Takemoto, T, Uchikawa, M, Yoshida, M, Bell, DM, Lovell-Badge, R, Papaioannou, VE, Kondoh, H (2011) Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature 470: pp. 394-398
    51. Tellez, CS, Juri, DE, Do, K, Bernauer, AM, Thomas, CL, Damiani, LA, Tessema, M, Leng, S, Belinsky, SA (2011) EMT and Stem Cell鈥揕ike Properties Associated with miR-205 and miR-200 Epigenetic Silencing Are Early Manifestations during Carcinogen-Induced Transformation of Human Lung Epithelial Cells. Cancer Res 71: pp. 3087-3097
    52. Cieply, B, Riley, P, Pifer, PM, Widmeyer, J, Addison, JB, Ivanov, AV, Denvir, J, Frisch, SM (2012) Suppression of the epithelial-mesenchymal transition by Grainyhead-like-2. Cancer Res 72: pp. 2440-2453
    53. Matsumata, M, Uchikawa, M, Kamachi, Y, Kondoh, H (2005) Multiple N-cadherin enhancers identified by systematic functional screening indicate its Group B1 SOX-dependent regulation in neural and placodal development. Dev Biol 286: pp. 601-617
    54. Thomson, M, Liu, SJ, Zou, L-N, Smith, Z, Meissner, A, Ramanathan, S (2011) Pluripotency Factors in Embryonic Stem Cells Regulate Differentiation into Germ Layers. Cell 145: pp. 875-889
    55. Sharov, AA, Masui, S, Sharova, LV, Piao, Y, Aiba, K, Matoba, R, Xin, L, Niwa, H, Ko, MSH (2008) Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data. BMC Genomics 9: pp. 269
    56. Paraskevopoulou, MD, Georgakilas, G, Kostoulas, N, Vlachos, IS, Vergoulis, T, Reczko, M, Filippidis, C, Dalamagas, T, Hatzigeorgiou, AG (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41: pp. W169-W173
    57. Betel, D, Wilson, M, Gabow, A, Marks, DS, Sander, C (2008) The microRNA.org resource: targets and expression. Nucl Acids Res 36: pp. D149-D153
    58. Hafner, M, Landthaler, M, Burger, L, Khorshid, M, Hausser, J, Berninger, P, Rothballer, A, Ascano, M, Jungkamp, A-C, Munschauer, M, Ulrich, A, Wardle, GS, Dewell, S, Zavolan, M, Tuschl, T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141: pp. 129-141
    59. Tseng, C-W, Lin, C-C, Chen, C-N, Huang, H-C, Juan, H-F (2011) Integrative network analysis reveals active microRNAs and their functions in gastric cancer. BMC Syst Biol 5: pp. 99
    60. Lee, S, Jung, J-W, Park, S-B, Roh, K, Lee, SY, Kim, JH, Kang, S-K, Kang, K-S (2011) Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multipotent stem cell aging. Cell Mol Life Sci 68: pp. 325-336
    61. Bottoni, A, Zatelli, MC, Ferracin, M, Tagliati, F, Piccin, D, Vignali, C, Calin, GA, Negrini, M, Croce, CM, degli Uberti, EC (2007) Identification of differentially expressed microRNAs by microarray: A possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210: pp. 370-377
    62. Zhang, J, Han, C, Wu, T (2012) MicroRNA-26a Promotes Cholangiocarcinoma Growth by Activating 尾-catenin. Gastroenterology 143: pp. 246-256
    63. Kye, M-J, Liu, T, Levy, SF, Xu, NL, Groves, BB, Bonneau, R, Lao, K, Kosik, KS (2007) Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR. RNA 13: pp. 1224-1234
    64. Alisi, A, Da Sacco, L, Bruscalupi, G, Piemonte, F, Panera, N, De Vito, R, Leoni, S, Bottazzo, GF, Masotti, A, Nobili, V (2011) Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet-induced nonalcoholic fatty liver disease. Lab Invest 91: pp. 283-293
    65. Oba, S, Kumano, S, Suzuki, E, Nishimatsu, H, Takahashi, M, Takamori, H, Kasuya, M, Ogawa, Y, Sato, K, Kimura, K, Homma, Y, Hirata, Y, Fujita, T (2010) miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS One 5: pp. e13614
    66. Chan, YC, Roy, S, Khanna, S, Sen, CK (2012) Downregulation of endothelial microRNA-200b supports cutaneous wound angiogenesis by desilencing GATA binding protein 2 and vascular endothelial growth factor receptor 2. Arterioscler Thromb Vasc Biol 32: pp. 1372-1382
    67. Wu, Y, Xiao, Y, Ding, X, Zhuo, Y, Ren, P, Zhou, C, Zhou, J (2011) A miR-200b/200c/429-Binding Site Polymorphism in the 3? Untranslated Region of the AP-2? Gene Is Associated with Cisplatin Resistance. PLoS One 6: pp. e29043
    68. Park, S-M, Gaur, AB, Lengyel, E, Peter, ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22: pp. 894-907
    69. Zhang, J, Zhang, H, Liu, J, Tu, X, Zang, Y, Zhu, J, Chen, J, Dong, L, Zhang, J (2012) miR-30 inhibits TGF-尾1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1. Biochem Biophys Res Commun 417: pp. 1100-1105
    70. Howe, EN, Cochrane, DR, Cittelly, DM, Richer, JK (2012) miR-200c Targets a NF-魏B Up-Regulated TrkB/NTF3 Autocrine Signaling Loop to Enhance Anoikis Sensitivity in Triple Negative Breast Cancer. PLoS One 7: pp. e49987
    71. Li, SS-L, Yu, S-L, Kao, L-P, Tsai, ZY, Singh, S, Chen, BZ, Ho, B-C, Liu, Y-H, Yang, P-C (2009) Target identification of microRNAs expressed highly in human embryonic stem cells. J Cell Biochem 106: pp. 1020-1030
    72. Xia, H, Hui, KM (2012) MicroRNAs involved in regulating epithelial鈥搈esenchymal transition and cancer stem cells as molecular targets for cancer therapeutics. Cancer Gene Ther 19: pp. 723-730
    73. Bockhorn, J, Yee, K, Chang, Y-F, Prat, A, Huo, D, Nwachukwu, C, Dalton, R, Huang, S, Swanson, KE, Perou, CM, Olopade, OI, Clarke, MF, Greene, GL, Liu, H (2013) MicroRNA-30c targets cytoskeleton genes involved in breast cancer cell invasion. Breast Cancer Res Treat 137: pp. 373-382
    74. Zhang, J-P, Zeng, C, Xu, L, Gong, J, Fang, J-H, Zhuang, S-M (2013) MicroRNA-148a suppresses the epithelial鈥搈esenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling. Oncogene.
    75. Kim, K, Lu, Z, Hay, ED (2002) Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 26: pp. 463-476
    76. Gillis, AJM, Stoop, H, Biermann, K, van Gurp, RJHLM, Swartzman, E, Cribbes, S, Ferlinz, A, Shannon, M, Wolter Oosterhuis, J, Looijenga, LHJ (2011) Expression and interdependencies of pluripotency factors LIN28, OCT3/4, NANOG and SOX2 in human testicular germ cells and tumours of the testis. Int J Androl 34: pp. e160-e174
    77. Alagaratnam, S, Harrison, N, Bakken, AC, Hoff, AM, Jones, M, Sveen, A, Moore, HD, Andrews, PW, Lothe, RA, Skotheim, RI (2013) Transforming Pluripotency: An Exon-Level Study of Malignancy-Specific Transcripts in Human Embryonal Carcinoma and Embryonic Stem Cells. Stem Cells Dev 22: pp. 1136-46
    78. Chien, C-H, Sun, Y-M, Chang, W-C, Chiang-Hsieh, P-Y, Lee, T-Y, Tsai, W-C, Horng, J-T, Tsou, A-P, Huang, H-D (2011) Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res 39: pp. 9345-9356
    79. Bulik-Sullivan, B, Selitsky, S, Sethupathy, P (2013) Prioritization of Genetic Variants in the microRNA Regulome as Functional Candidates in Genome-Wide Association Studies. Hum Mutat 34: pp. 1049-56
    80. Khew-Goodall, Y, Goodall, GJ (2010) Myc-modulated miR-9 makes more metastases. Nat Cell Biol 12: pp. 209-211
    81. Banyard, J, Chung, I, Wilson, AM, Vetter, G, Le B茅chec, A, Bielenberg, DR, Zetter, BR (2013) Regulation of epithelial plasticity by miR-424 and miR-200 in a new prostate cancer metastasis model. Sci Rep 3: pp. 3151
    82. Qu, Y, Li, W-C, Hellem, MR, Rostad, K, Popa, M, McCormack, E, Oyan, AM, Kalland, K-H, Ke, X-S (2013) MiR-182 and miR-203 induce mesenchymal to epithelial transition and self-sufficiency of growth signals via repressing SNAI2 in prostate cells. Int J Cancer 133: pp. 544-555
    83. Li, XL, Hara, T, Choi, Y, Subramanian, M, Francis, P, Bilke, S, Walker, RL, Pineda, M, Zhu, Y, Yang, Y, Luo, J, Wakefield, LM, Brabletz, T, Park, BH, Sharma, S, Chowdhury, D, Meltzer, PS, Lal, A (2014) A p21-ZEB1 complex inhibits epithelial-mesenchymal transition through the microRNA 183-96-182 cluster. Mol Cell Biol 34: pp. 533-550
    84. Song, SJ, Poliseno, L, Song, MS, Ala, U, Webster, K, Ng, C, Beringer, G, Brikbak, NJ, Yuan, X, Cantley, LC, Richardson, AL, Pandolfi, PP (2013) MicroRNA-Antagonism Regulates Breast Cancer Stemness and Metastasis via TET-Family-Dependent Chromatin Remodeling. Cell 154: pp. 311-324
    85. Liang, Y-J, Wang, Q-Y, Zhou, C-X, Yin, Q-Q, He, M, Yu, X-T, Cao, D-X, Chen, G-Q, He, J-R, Zhao, Q (2013) MiR-124 targets Slug to regulate epithelial-mesenchymal transition and metastasis of breast cancer. Carcinogenesis 34: pp. 713-722
    86. Zhao, X, Dou, W, He, L, Liang, S, Tie, J, Liu, C, Li, T, Lu, Y, Mo, P, Shi, Y, Wu, K, Nie, Y, Fan, D (2013) MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene 32: pp. 1363-1372
    87. Brockhausen, J, Tay, SS, Grzelak, CA, Bertolino, P, Bowen, DG, d鈥?Avigdor, WM, Teoh, N, Pok, S, Shackel, N, Gamble, J, Vadas, M, McCaughan, GW (2014) miR-181a mediates TGF-尾 induced hepatocyte EMT and is dysregulated in cirrhosis and hepatocellular cancer. Liver Int.
    88. Barroso-delJesus, A, Romero-L贸pez, C, Lucena-Aguilar, G, Melen, GJ, Sanchez, L, Ligero, G, Berzal-Herranz, A, Menendez, P (2008) Embryonic Stem Cell-Specific miR302-367 Cluster: Human Gene Structure and Functional Characterization of Its Core Promoter. Mol Cell Biol 28: pp. 6609-6619
    89. Greer Card, DA, Hebbar, PB, Li, L, Trotter, KW, Komatsu, Y, Mishina, Y, Archer, TK (2008) Oct4/Sox2-Regulated miR-302 Targets Cyclin D1 in Human Embryonic Stem Cells. Mol Cell Biol 28: pp. 6426-6438
    90. Peng, C, Li, N, Ng, Y-K, Zhang, J, Meier, F, Theis, FJ, Merkenschlager, M, Chen, W, Wurst, W, Prakash, N (2012) A unilateral negative feedback loop between miR-200 microRNAs and Sox2/E2F3 controls neural progenitor cell-cycle exit and differentiation. J Neurosci 32: pp. 13292-13308
    91. Hsu, S-D, Tseng, Y-T, Shrestha, S, Lin, Y-L, Khaleel, A, Chou, C-H, Chu, C-F, Huang, H-Y, Lin, C-M, Ho, S-Y, Jian, T-Y, Lin, F-M, Chang, T-H, Weng, S-L, Liao, K-W, Liao, I-E, Liu, C-C, Huang, H-D (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucl Acids Res 42: pp. D78-D85
    92. Silv谩n, U, D铆ez-Torre, A, Arluzea, J, Andrade, R, Sili贸, M, Ar茅chaga, J (2009) Hypoxia and pluripotency in embryonic and embryonal carcinoma stem cell biology. Differentiation 78: pp. 159-168
    93. Sartore, RC, Campos, PB, Trujillo, CA, Ramalho, BL, Negraes, PD, Paulsen, BS, Meletti, T, Costa, ES, Chicaybam, L, Bonamino, MH, Ulrich, H, Rehen, SK (2011) Retinoic acid-treated pluripotent stem cells undergoing neurogenesis present increased aneuploidy and micronuclei formation. PLoS One 6: pp. e20667
    94. Noguer-Dance, M, Abu-Amero, S, Al-Khtib, M, Lef猫vre, A, Coullin, P, Moore, GE, Cavaill茅, J (2010) The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet 19: pp. 3566-3582
    95. Kleinman, CL, Gerges, N, Papillon-Cavanagh, S, Sin-Chan, P, Pramatarova, A, Quang, D-AK, Adoue, V, Busche, S, Caron, M, Djambazian, H, Bemmo, A, Fontebasso, AM, Spence, T, Schwartzentruber, J, Albrecht, S, Hauser, P, Garami, M, Klekner, A, Bognar, L, Montes, J-L, Staffa, A, Montpetit, A, Berube, P, Zakrzewska, M, Zakrzewski, K, Liberski, PP, Dong, Z, Siegel, PM, Duchaine, T, Perotti, C (2014) Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nat Genet 46: pp. 39-44
    96. Xu, N, Papagiannakopoulos, T, Pan, G, Thomson, JA, Kosik, KS (2009) MicroRNA-145 Regulates OCT4, SOX2, and KLF4 and Represses Pluripotency in Human Embryonic Stem Cells. Cell 137: pp. 647-658
    97. Jeon, H-M, Sohn, Y-W, Oh, S-Y, Oh, S-Y, Kim, S-H, Beck, S, Kim, S, Kim, H (2011) ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res 71: pp. 3410-3421
    98. Jo, M, Lee, CH, Ali, BA, Alarifi, SA, Al-Khedhairy, AA, Kim, S (2012) A bioinformatics approach for in vivo imaging of endogenous MicroRNA targets during neurogenesis. Tissue Eng Regen Med 9: pp. 157-169
    99. Rodda, DJ, Chew, J-L, Lim, L-H, Loh, Y-H, Wang, B, Ng, H-H, Robson, P (2005) Transcriptional Regulation of Nanog by OCT4 and SOX2. J Biol Chem 280: pp. 24731-24737
    100. Loh, Y-H, Wu, Q, Chew, J-L, Vega, VB, Zhang, W, Chen, X, Bourque, G, George, J, Leong, B, Liu, J, Wong, K-Y, Sung, KW, Lee, CWH, Zhao, X-D, Chiu, K-P, Lipovich, L, Kuznetsov, VA, Robson, P, Stanton, LW, Wei, C-L, Ruan, Y, Lim, B, Ng, H-H (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38: pp. 431-440
    101. Mintz, PJ, Saetrom, P, Reebye, V, Lundbaek, MB, Lao, K, Rossi, JJ, Gaensler, KM, Kasahara, N, Nicholls, JP, Jensen, S, Haoudi, A, Emara, MM, Gordon, MY, Habib, NA (2012) MicroRNA-181a* Targets Nanog in a Subpopulation of CD34+ Cells Isolated From Peripheral Blood. Mol Ther Nucleic Acids 1: pp. e34
    102. O鈥橪oghlen, A, Mu帽oz-Cabello, AM, Gaspar-Maia, A, Wu, H-A, Banito, A, Kunowska, N, Racek, T, Pemberton, HN, Beolchi, P, Lavial, F, Masui, O, Vermeulen, M, Carroll, T, Graumann, J, Heard, E, Dillon, N, Azuara, V, Snijders, AP, Peters, G, Bernstein, E, Gil, J (2012) MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. Cell Stem Cell 10: pp. 33-46
    103. Ji, J, Yamashita, T, Budhu, A, Forgues, M, Jia, H-L, Li, C, Deng, C, Wauthier, E, Reid, LM, Ye, Q-H, Qin, L-X, Yang, W, Wang, H-Y, Tang, Z-Y, Croce, CM, Wang, XW (2009) Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology 50: pp. 472-480
    104. Wang, Y, Yu, Y, Tsuyada, A, Ren, X, Wu, X, Stubblefield, K, Rankin-Gee, EK, Wang, SE (2011) Transforming growth factor-尾 regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 30: pp. 1470-1480
    105. Xu, Z, Jiang, J, Xu, C, Wang, Y, Sun, L, Guo, X, Liu, H (2013) MicroRNA-181 regulates CARM1 and histone arginine methylation to promote differentiation of human embryonic stem cells. PLoS One 8: pp. e53146
    106. Luo, W, Li, S, Peng, B, Ye, Y, Deng, X, Yao, K (2013) Embryonic Stem Cells Markers SOX2, OCT4 and Nanog Expression and Their Correlations with Epithelial-Mesenchymal Transition in Nasopharyngeal Carcinoma. PLoS One 8: pp. e56324
    107. Velpula, KK, Dasari, VR, Tsung, AJ, Dinh, DH, Rao, JS (2011) Cord blood stem cells revert glioma stem cell EMT by down regulating transcriptional activation of Sox2 and Twist1. Oncotarget 2: pp. 1028-1042
    108. Li, X, Xu, Y, Chen, Y, Chen, S, Jia, X, Sun, T, Liu, Y, Li, X, Xiang, R, Li, N (2013) SOX2 promotes tumor metastasis by stimulating epithelial-to-mesenchymal transition via regulation of WNT/尾-catenin signal network. Cancer Lett 336: pp. 379-89
    109. Mani, SA, Guo, W, Liao, M-J, Eaton, EN, Ayyanan, A, Zhou, AY, Brooks, M, Reinhard, F, Zhang, CC, Shipitsin, M, Campbell, LL, Polyak, K, Brisken, C, Yang, J, Weinberg, RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: pp. 704-715
    110. Morel, A-P, Li猫vre, M, Thomas, C, Hinkal, G, Ansieau, S, Puisieux, A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3: pp. e2888
    111. Deb-Rinker, P, Ly, D, Jezierski, A, Sikorska, M, Walker, PR (2005) Sequential DNA Methylation of the Nanog and Oct-4 Upstream Regions in Human NT2 Cells during Neuronal Differentiation. J Biol Chem 280: pp. 6257-6260
    112. Sikorska, M, Sandhu, JK, Deb-Rinker, P, Jezierski, A, LeBlanc, J, Charlebois, C, Ribecco-Lutkiewicz, M, Bani-Yaghoub, M, Walker, PR (2008) Epigenetic modifications of SOX2 enhancers, SRR1 and SRR2, correlate with in vitro neural differentiation. J Neurosci Res 86: pp. 1680-1693
    113. Livak, KJ, Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: pp. 402-408
    114. Haan, C, Behrmann, I (2007) A cost effective non-commercial ECL-solution for Western blot detections yielding strong signals and low background. J Immunol Methods 318: pp. 11-19
    115. Smyth, G limma: Linear Models for Microarray Data. In: Gentleman, R, Carey, VJ, Huber, W, Irizarry, RA, Dudoit, S eds. (2005) Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer, New York, pp. 397-420
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background SOX2 is a core component of the transcriptional network responsible for maintaining embryonal carcinoma cells (ECCs) in a pluripotent, undifferentiated state of self-renewal. As such, SOX2 is an oncogenic transcription factor and crucial cancer stem cell (CSC) biomarker in embryonal carcinoma and, as more recently found, in the stem-like cancer cell component of many other malignancies. SOX2 is furthermore a crucial factor in the maintenance of adult stem cell phenotypes and has additional roles in cell fate determination. The SOX2-linked microRNA (miRNA) transcriptome and regulome has not yet been fully defined in human pluripotent cells or CSCs. To improve our understanding of the SOX2-linked miRNA regulatory network as a contribution to the phenotype of these cell types, we used high-throughput differential miRNA and gene expression analysis combined with existing genome-wide SOX2 chromatin immunoprecipitation (ChIP) data to map the SOX2 miRNA transcriptome in two human embryonal carcinoma cell (hECC) lines. Results Whole-microRNAome and genome analysis of SOX2-silenced hECCs revealed many miRNAs regulated by SOX2, including several with highly characterised functions in both cancer and embryonic stem cell (ESC) biology. We subsequently performed genome-wide differential expression analysis and applied a Monte Carlo simulation algorithm and target prediction to identify a SOX2-linked miRNA regulome, which was strongly enriched with epithelial-to-mesenchymal transition (EMT) markers. Additionally, several deregulated miRNAs important to EMT processes had SOX2 binding sites in their promoter regions. Conclusion In ESC-like CSCs, SOX2 regulates a large miRNA network that regulates and interlinks the expression of crucial genes involved in EMT.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700