Eicosanoids mediate Galleria mellonella immune response to hemocoel injection of entomopathogenic nematode cuticles
详细信息    查看全文
  • 作者:Yunhong Yi ; Gongqing Wu ; Junliang Lv ; Mei Li
  • 关键词:Entomopathogenic nematodes ; Immune response ; Galleria mellonella ; Eicosanoid biosynthesis
  • 刊名:Parasitology Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:115
  • 期:2
  • 页码:597-608
  • 全文大小:3,196 KB
  • 参考文献:Asgari S, Schmidt O (2003) Is cell surface calreticulin involved in phagocytosis by insect hemocytes? J Insect Physiol 49:545–550CrossRef PubMed
    Bowen D, Rocheleau TA, Blackburn M, Andreev O, Golubeva E, Bhartia R, ffrench-Constant RH (1998) Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280:2129–2132CrossRef PubMed
    Brivio MF, Pagani M, Restelli S (2002) Immune suppression of Galleria mellonella (Insecta, Lepidoptera) humoral defenses induced by Steinernema feltiae (Nematoda, Rhabditida): involvement of the parasite cuticle. Exp Parasitol 101:149–156CrossRef PubMed
    Brivio MF, Mastore M, Moro M (2004) The role of Steinernema feltiae body-surface lipids in host-parasite immunological interactions. Mol Biochem Parasite 135:111–121CrossRef
    Brivio MF, Moro M, Mastore M (2006) Down-regulation of antibacterial peptide synthesis in an insect model induced by the body-surface of an entomoparasite (Steinernema feltiae). Dev Comp Immunol 30:627–638CrossRef
    Brivio MF, Mastore M, Nappi AJ (2010) A pathogenic parasite interferes with phagocytosis of insect immunocompetent cells. Dev Comp Immunol 34:991–998CrossRef PubMed
    Buyukguzel E, Tunaz H, Stanley D, Buyukguzel K (2007) Eicosanoids mediate Galleria mellonella cellular immune response to viral infection. J Insect Physiol 53(1):99–105CrossRef PubMed
    Carton Y, Frey F, Stanley DW, Vass E, Nappi AJ (2002) Dexamethasone inhibition of the cellular immune response of Drosophila melanogaster against a parasitoid. J Parasitol 88:405–407CrossRef PubMed
    Cerenius L, Lee BL, Soderhall K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29:263–271CrossRef PubMed
    de Oliveira Vasconcelos V, Furlong J, de Freitas GM, Dolinski C, Aguillera MM, Rodrigues RC, Prata M (2004) Steinernema glaseri Santa Rosa strain (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora CCA strain (Rhabditida: Heterorhabditidae) as biological control agents of Boophilus microplus (Acari: Ixodidae). Parasitol Res 94:201–206CrossRef PubMed
    Dean P, Gadsden JC, Richards EH, Edwards JP, Charnley AK, Reynolds SE (2002) Modulation by eicosanoid biosynthesis inhibitors of immune responses by the insect Manduca sexta to the pathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 79:93–101CrossRef PubMed
    Downer RG, Moore SJ, Diehl-Jones WL, Mandato CA (1997) The effects of eicosanoid biosynthesis inhibitors on prophenoloxidase activation, phagocytosis and cell spreading in Galleria mellonella. J Insect Physiol 43:1–8CrossRef PubMed
    Durmus Y, Buyukguzel E, Terzi B, Tunaz H, Stanley D, Buyukguzel K (2008) Eicosanoids mediate melanotic nodulation reactions to viral infection in larvae of the parasitic wasp, Pimpla turionellae. J Insect Physiol 54:17–24CrossRef PubMed
    Eleftherianos I, Marokhazi J, Millichap PJ, Hodgkinson AJ, Sriboonlert A, ffrench-Constant RH, Reynolds SE (2006) Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: roles of immune-related proteins shown by RNA interference. Insect Biochem Mol 36:517–525CrossRef
    Eleftherianos I, Joyce S, Ffrench-Constant RH, Clarke DJ, Reynolds SE (2010) Probing the tri-trophic interaction between insects, nematodes and Photorhabdus. Parasitology 137:1695–1706CrossRef PubMed
    Freitas-Ribeiro GM, Vasconcelos VO, Furlong J, Dolinski C (2009) Evaluation of the efficacy of strains of Steinernema carpocapsae Santa Rosa and ALL (Steinernematidae: Rhabditida) to control engorged female Anocentor nitens (Acari: Ixodidae). Parasitol Res 104:1203–1206CrossRef PubMed
    Garcia ES, Machado EM, Azambuja P (2004a) Effects of eicosanoid biosynthesis inhibitors on the prophenoloxidase-activating system and microaggregation reactions in the hemolymph of Rhodnius prolixus infected with Trypanosoma rangeli. J Insect Physiol 50:157–165CrossRef PubMed
    Garcia ES, Machado EM, Azambuja P (2004b) Inhibition of hemocyte microaggregation reactions in Rhodnius prolixus larvae orally infected with Trypanosoma rangeli. Exp Parasitol 107:31–38CrossRef PubMed
    Gardiner EM, Strand MR (2000) Hematopoiesis in larval Pseudoplusia includens and Spodoptera frugiperda. Arch Insect Biochem Physiol 43:147–164CrossRef PubMed
    Giannoulis P, Brooks CL, Dunphy GB, Mandato CA, Niven DF, Zakarian RJ (2007) Interaction of the bacteria Xenorhabdus nematophila (Enterobactericeae) and Bacillus subtilis (Bacillaceae) with the hemocytes of larval Malacosoma disstria (Insecta : Lepidoptera : Lasiocampidae). J Invertebr Pathol 94:20–30CrossRef PubMed
    Giannoulis P, Brooks CL, Dunphy GB, Niven DF, Mandato CA (2008) Surface antigens of Xenorhabdus nematophila (F. Enterobacteriaceae) and Bacillus subtilis (F. Bacillaceae) react with antibacterial factors of Malacosoma disstria (C. Insecta : O. Lepidoptera) hemolymph. J Invertebr Pathol 97:211–222CrossRef PubMed
    Goldsworthy G, Chandrakant S, Opoku-Ware K (2003) Adipokinetic hormone enhances nodule formation and phenoloxidase activation in adult locusts injected with bacterial lipopolysaccharide. J Insect Physiol 49:795–803CrossRef PubMed
    Hallem EA, Rengarajan M, Ciche TA, Sternberg PW (2007) Nematodes, bacteria, and flies: a tripartite model for nematode parasitism. Curr Biol 17:898–904CrossRef PubMed
    Hyrsl P, P. Dobes, Wang Z, Hauling T, Wilhelmsson C, Theopold U (2011) Clotting factors and eicosanoids protect against nematode infections. J Innate Immun 3:65–70
    Kim Y, Ji D, Cho S, Park Y (2005) Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J Invertebr Pathol 89:258–264CrossRef PubMed
    Ling EJ, Yu XQ (2006) Cellular encapsulation and melanization are enhanced by immulectins, pattern recognition receptors from the tobacco hornworm Manduca sexta. Dev Comp Immunol 30:289–299CrossRef PubMed
    Liu F, Xu Q, Zhang Q, Lu A, Beerntsen BT, Ling E (2013) Hemocytes and hematopoiesis in the silkworm, Bombyx mori. Isj-Invert Surviv J 10:102–109
    Lord JC, Anderson S, Stanley DW (2002) Eicosanoids mediate Manduca sexta cellular response to the fungal pathogen Beauveria bassiana: a role for the lipoxygenase pathway. Arch Insect Biochem Physiol 51:46–54CrossRef PubMed
    Lowenberger CA, Ferdig MT, Bulet P, Khalili S, Hoffmann JA, Christensen BM (1996) Aedes aegypti: induced antibacterial proteins reduce the establishment and development of Brugia malayi. Exp Parasitol 83:191–201CrossRef PubMed
    Meister M, Hetru C, Hoffmann JA (2000) The antimicrobial host defense of Drosophila. Orig Evol Vertebr Immune Syst 248:17–36CrossRef
    Merchant D, Ertl RL, Rennard SI, Stanley DW, Miller JS (2008) Eicosanoids mediate insect hemocyte migration. J Insect Physiol 54:215–221CrossRef PubMed
    Miller JS (2005) Eicosanoids influence in vitro elongation of plasmatocytes from the tobacco hornworm, Manduca sexta. Arch Insect Biochem Physiol 59:42–51CrossRef PubMed
    Miller JS, Stanley DW (2001) Eicosanoids mediate microaggregation reactions to bacterial challenge in isolated insect hemocyte preparations. J Insect Physiol 47:1409–1417CrossRef PubMed
    Miller JS, Nguyen T, Stanley-Samuelson DW (1994) Eicosanoids mediate insect nodulation responses to bacterial infections. Proc Natl Acad Sci U S A 91:12418–12422PubMedCentral CrossRef PubMed
    Miller JS, Howard RW, Rana RL, Tunaz H, Stanley DW (1999) Eicosanoids mediate nodulation reactions to bacterial infections in adults of the cricket, Gryllus assimilis. J Insect Physiol 45:75–83CrossRef PubMed
    Moret Y, Siva-Jothy MT (2003) Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proc Biol Sci 270:2475–2480PubMedCentral CrossRef PubMed
    Nardi JB (2004) Embryonic origins of the two main classes of hemocytes—granular cells and plasmatocytes—in Manduca sexta. Dev Genes Evol 214:19–28CrossRef PubMed
    Reis-Menini CMR, Prata MCA, Furlong J, Silva ER (2008) Compatibility between the entomopathogenic nematode Steinernema glaseri (Rhabditida : Steinernematidae) and an acaricide in the control of Rhipicephalus (Boophilus) microplus (Acari : Ixodidae). Parasitol Res 103:1391–1396CrossRef PubMed
    Samish M, Glazer I (2001) Entomopathogenic nematodes for the biocontrol of ticks. Trends Parasitol 17:368–371CrossRef PubMed
    Schmidt O, Theopold U, Strand M (2001) Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. Bioessays 23:344–351CrossRef PubMed
    Stanley D, Shapiro M (2007) Eicosanoid biosynthesis inhibitors increase the susceptibility of Lymantria dispar to nucleopolyhedrovirus LdMNPV. J Invertebr Pathol 95:119–124CrossRef PubMed
    Stanley DW, Hoback WW, Bedick JC, Tunaz H, Rana RL, Aliza ARN, Miller JS (1999) Eicosanoids mediate nodulation reactions to bacterial infections in larvae of the butterfly, Colias eurytheme. Comp Biochem Physiol C 123:217–223PubMed
    Stanley-Samuelson DW, Jensen E, Nickerson KW, Tiebel K, Ogg CL, Howard RW (1991) Insect immune response to bacterial infection is mediated by eicosanoids. Proc Natl Acad Sci U S A 88:1064–1068PubMedCentral CrossRef PubMed
    Toubarro D, Avila MM, Montiel R, Simoes N (2013) A pathogenic nematode targets recognition proteins to avoid insect defenses. Plos One 8:e75691PubMedCentral CrossRef PubMed
    Vass E, Nappi AJ (2001) Fruit fly immunity. Bioscience 51:529–535CrossRef
    Walter TN, Dunphy GB, Mandato CA (2008) Steinernema carpocapsae DD136: metabolites limit the non-self adhesion responses of haemocytes of two lepidopteran larvae, Galleria mellonella (F. Pyralidae) and Malacosoma disstria (F. Lasiocampidae). Exp Parasitol 120:161–174CrossRef PubMed
    Wu GQ, Yi YH (2015) Effects of dietary heavy metals on the immune and antioxidant systems of Galleria mellonella larvae. Comp Biochem Physiol C Pharmacol Toxicol 167:131–139CrossRef
    Yajima M, Takada M, Takahashi N, Kikuchi H, Natori S, Oshima Y, Kurata S (2003) A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase A2-generated fatty acid cascade and lipopolysaccharide-dependent activation of the immune deficiency (imd) pathway in insect immunity. Biochem J 371:205–210PubMedCentral CrossRef PubMed
    Yamashita M, Iwabuchi K (2001) Bombyx mori prohemocyte division and differentiation in individual microcultures. J Insect Physiol 47:325–231CrossRef PubMed
  • 作者单位:Yunhong Yi (1)
    Gongqing Wu (1)
    Junliang Lv (1)
    Mei Li (2)

    1. School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
    2. University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, 528402, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Medical Microbiology
    Microbiology
    Immunology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1955
文摘
Entomopathogenic nematodes are symbiotically associated with bacteria and widely used in biological control of insect pests. The interference of symbiotic bacteria with insect host immune responses is fairly well documented. However, knowledge of mechanisms regulating parasite–host interactions still remains fragmentary. In this study, we used nematode (Steinernema carpocapsae and Heterorhabditis bacteriophora) cuticles and Galleria mellonella larvae as parasite–host model, focused on the changes of innate immune parameters of the host in the early phase of nematode cuticle infection and investigated the role of eicosanoid biosynthesis pathway in the process. The results showed that injection of either S. carpocapsae or H. bacteriophora cuticles into the larval hemocoel both resulted in significant decreases in the key innate immune parameters (e.g., hemocyte density, microaggregation, phagocytosis and encapsulation abilities of hemocyte, and phenoloxidase and antibacterial activities of the cell-free hemolymph). Our study indicated that the parasite cuticles could actively suppress the innate immune response of the G. mellonella host. We also found that treating G. mellonella larvae with dexamethasone and indomethacin induced similar depression in the key innate immune parameters to the nematode cuticles. However, these effects were reversed when dexamethasone, indomethacin, or nematode cuticles were injected together with arachidonic acid. Additionally, we found that palmitic acid did not reverse the influence of the dexamethasone, indomethacin, or nematode cuticles on the innate immune responses. Therefore, we inferred from our results that both S. carpocapsae and H. bacteriophora cuticles inhibited eicosanoid biosynthesis to induce host immunodepression. Keywords Entomopathogenic nematodes Immune response Galleria mellonella Eicosanoid biosynthesis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700