GM1 Ganglioside is Involved in Epigenetic Activation Loci of Neuronal Cells
详细信息    查看全文
  • 作者:Yi-Tzang Tsai ; Yutaka Itokazu ; Robert K. Yu
  • 关键词:Brain development ; Epigenetic regulation ; Glycosyltransferase ; GM1 ganglioside ; Histone acetylation ; Neural stem cell ; Neural progenitor cell ; Neuronal differentiation
  • 刊名:Neurochemical Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:41
  • 期:1-2
  • 页码:107-115
  • 全文大小:5,844 KB
  • 参考文献:1.IUPAC-IUB Commission on Biochemical Nomenclature (1977) The nomenclature of lipids. Recommendations (1976). Lipids 12:455–468CrossRef
    2.Svennerholm L (1963) Chromatographic separation of human brain gangliosides. J Neurochem 10:613–623CrossRef PubMed
    3.Hirabayashi Y, Gotoh Y (2010) Epigenetic control of neural precursor cell fate during development. Nat Rev Neurosci 11:377–388CrossRef PubMed
    4.Jobe EM, McQuate AL, Zhao X (2012) Crosstalk among epigenetic pathways regulates neurogenesis. Front Neurosci 6:59CrossRef PubMed PubMedCentral
    5.Hsieh J, Gage FH (2004) Epigenetic control of neural stem cell fate. Curr Opin Genet Dev 14:461–469CrossRef PubMed
    6.Mehler MF (2008) Epigenetics and the nervous system. Ann Neurol 64:602–617CrossRef PubMed
    7.Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 101:16659–16664CrossRef PubMed PubMedCentral
    8.Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840CrossRef PubMed
    9.Jamaladdin S, Kelly RD, O’Regan L, Dovey OM, Hodson GE, Millard CJ, Portolano N, Fry AM, Schwabe JW, Cowley SM (2014) Histone deacetylase (HDAC) 1 and 2 are essential for accurate cell division and the pluripotency of embryonic stem cells. Proc Natl Acad Sci USA 111:9840–9845CrossRef PubMed PubMedCentral
    10.Watson PJ, Fairall L, Santos GM, Schwabe JW (2012) Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481:335–340PubMed PubMedCentral
    11.Millard CJ, Watson PJ, Celardo I, Gordiyenko Y, Cowley SM, Robinson CV, Fairall L, Schwabe JW (2013) Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol Cell 51:57–67CrossRef PubMed PubMedCentral
    12.Ozcan S, Andrali SS, Cantrell JE (2010) Modulation of transcription factor function by O-GlcNAc modification. Biochim Biophys Acta 1799:353–364CrossRef PubMed PubMedCentral
    13.Hardiville S, Hart GW (2014) Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab 20:208–213CrossRef PubMed PubMedCentral
    14.Lewis BA, Hanover JA (2014) O-GlcNAc and the epigenetic regulation of gene expression. J Biol Chem 289:34440–34448CrossRef PubMed PubMedCentral
    15.Lucki NC, Sewer MB (2012) Nuclear sphingolipid metabolism. Annu Rev Physiol 74:131–151CrossRef PubMed PubMedCentral
    16.Wang J, Wu G, Miyagi T, Lu ZH, Ledeen RW (2009) Sialidase occurs in both membranes of the nuclear envelope and hydrolyzes endogenous GD1a. J Neurochem 111:547–554CrossRef PubMed
    17.Yu RK, Itokazu Y (2014) Glycolipid and glycoprotein expression during neural development. Adv Neurobiol 9:185–222CrossRef PubMed
    18.Saito M, Sugiyama K (2002) Characterization of nuclear gangliosides in rat brain: concentration, composition, and developmental changes. Arch Biochem Biophys 398:153–159CrossRef PubMed
    19.Wu G, Lu ZH, Ledeen RW (1995) GM1 ganglioside in the nuclear membrane modulates nuclear calcium homeostasis during neurite outgrowth. J Neurochem 65:1419–1422CrossRef PubMed
    20.Wu G, Lu ZH, Ledeen RW (1995) Induced and spontaneous neuritogenesis are associated with enhanced expression of ganglioside GM1 in the nuclear membrane. J Neurosci 15:3739–3746PubMed
    21.Ledeen RW, Wu G (2015) The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 40:407–418CrossRef PubMed
    22.Xie X, Wu G, Lu ZH, Ledeen RW (2002) Potentiation of a sodium-calcium exchanger in the nuclear envelope by nuclear GM1 ganglioside. J Neurochem 81:1185–1195CrossRef PubMed
    23.Tempera I, Buchetti B, Lococo E, Gradini R, Mastronardi A, Mascellino MT, Sale P, Mosca L, d’Erme M, Lenti L (2008) GD3 nuclear localization after apoptosis induction in HUT-78 cells. Biochem Biophys Res Commun 368:495–500CrossRef PubMed
    24.Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S, Spiegel S (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325:1254–1257CrossRef PubMed PubMedCentral
    25.Talamas JA, Capelson M (2015) Nuclear envelope and genome interactions in cell fate. Front Genet 6:95CrossRef PubMed PubMedCentral
    26.Demmerle J, Koch AJ, Holaska JM (2013) Emerin and histone deacetylase 3 (HDAC3) cooperatively regulate expression and nuclear positions of MyoD, Myf5, and Pax7 genes during myogenesis. Chromosome Res 21:765–779CrossRef PubMed
    27.Wang J, Yu RK (2013) Interaction of ganglioside GD3 with an EGF receptor sustains the self-renewal ability of mouse neural stem cells in vitro. Proc Natl Acad Sci USA 110:19137–19142CrossRef PubMed PubMedCentral
    28.Tsai YT, Yu RK (2014) Epigenetic activation of mouse ganglioside synthase genes: implications for neurogenesis. J Neurochem 128:101–110CrossRef PubMed
    29.Nakatani Y, Yanagisawa M, Suzuki Y, Yu RK (2010) Characterization of GD3 ganglioside as a novel biomarker of mouse neural stem cells. Glycobiology 20:78–86CrossRef PubMed PubMedCentral
    30.Itokazu Y, Yu RK (2014) Amyloid beta-peptide 1-42 modulates the proliferation of mouse neural stem cells: upregulation of fucosyltransferase IX and notch signaling. Mol Neurobiol 50:186–196CrossRef PubMed PubMedCentral
    31.Wysocka J, Reilly PT, Herr W (2001) Loss of HCF-1-chromatin association precedes temperature-induced growth arrest of tsBN67 cells. Mol Cell Biol 21:3820–3829CrossRef PubMed PubMedCentral
    32.Suzuki Y, Yanagisawa M, Ariga T, Yu RK (2011) Histone acetylation-mediated glycosyltransferase gene regulation in mouse brain during development. J Neurochem 116:874–880CrossRef PubMed PubMedCentral
    33.Yu RK, Lee SH (1976) In vitro biosynthesis of sialosylgalactosylceramide (G7) by mouse brain microsomes. J Biol Chem 251:198–203PubMed
    34.Seo S, Lim JW, Yellajoshyula D, Chang LW, Kroll KL (2007) Neurogenin and NeuroD direct transcriptional targets and their regulatory enhancers. EMBO J 26:5093–5108CrossRef PubMed PubMedCentral
    35.Kizuka Y, Kitazume S, Yoshida M, Taniguchi N (2011) Brain-specific expression of N-acetylglucosaminyltransferase IX (GnT-IX) is regulated by epigenetic histone modifications. J Biol Chem 286:31875–31884CrossRef PubMed PubMedCentral
    36.Tsai YT, Lin CI, Chen HK, Lee KM, Hsu CY, Yang SJ, Yeh NH (2008) Chromatin tethering effects of hNopp140 are involved in the spatial organization of nucleolus and the rRNA gene transcription. J Biomed Sci 15:471–486CrossRef PubMed PubMedCentral
    37.Zheng X, Kim Y, Zheng Y (2015) Identification of lamin B-regulated chromatin regions based on chromatin landscapes. Mol Biol Cell 26:2685–2697CrossRef PubMed PubMedCentral
    38.Osmanagic-Myers S, Dechat T, Foisner R (2015) Lamins at the crossroads of mechanosignaling. Genes Dev 29:225–237CrossRef PubMed PubMedCentral
    39.Tremblay D, Andrzejewski L, Leclerc A, Pelling AE (2013) Actin and microtubules play distinct roles in governing the anisotropic deformation of cell nuclei in response to substrate strain. Cytoskeleton 70:837–848CrossRef PubMed
    40.Ngamukote S, Yanagisawa M, Ariga T, Ando S, Yu RK (2007) Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem 103:2327–2341CrossRef PubMed
    41.Kotzerke J, Stibane C, Dralle H, Wiese H, Burchert W (1989) Screening for pheochromocytoma in the MEN 2 syndrome. Henry Ford Hosp Med J 37:129–131PubMed
    42.Saito M, Hagita H, Ito M, Ando S, Yu RK (2002) Age-dependent reduction in sialidase activity of nuclear membranes from mouse brain. Exp Gerontol 37:937–941CrossRef PubMed
    43.Saito M, Fronda CL, Yu RK (1996) Sialidase activity in nuclear membranes of rat brain. J Neurochem 66:2205–2208CrossRef PubMed
  • 作者单位:Yi-Tzang Tsai (1) (2)
    Yutaka Itokazu (1) (2)
    Robert K. Yu (1) (2)

    1. Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
    2. Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Biochemistry
    Neurology
  • 出版者:Springer Netherlands
  • ISSN:1573-6903
文摘
Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and are mainly regulated through stage-specific expression of glycosyltransferase (ganglioside synthase) genes. We previously demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase) gene promoter resulted in recruitment of trans-activation factors. In addition, we reported that epigenetic activation of the GalNAcT gene was also detected as accompanied by an apparent induction of neuronal differentiation in neural stem cells responding to an exogenous supplement of ganglioside GM1. Here, we present evidence supporting the concept that nuclear GM1 is associated with gene regulation in neuronal cells. We found that nuclear GM1 binds acetylated histones on the promoters of the GalNAcT and NeuroD1 genes in differentiated neurons. Our study demonstrates for the first time that GM1 interacts with chromatin via acetylated histones at the nuclear periphery of neuronal cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700