Micro- and nano-structured conducting polymeric materials
详细信息    查看全文
  • 作者:Gewu Lu (1)
    Feng’en Chen (1)
    Xufeng Wu (1)
    Liangti Qu (1)
    Jiaxin Zhang (1)
    Gaoquan Shi (1)
  • 关键词:conducting polymer ; microstructure ; soft template ; hard template
  • 刊名:Chinese Science Bulletin
  • 出版年:2005
  • 出版时间:August 2005
  • 年:2005
  • 卷:50
  • 期:16
  • 页码:1673-1682
  • 全文大小:3022KB
  • 参考文献:1. Nalwa, H. S., Handbook of Nanostructured Materials and Nanotechnology, New York: Academic Press, 2000.
    2. Shalaev, V. M., Moskovits, M., Nanostructured Materials: Clusters, Composites, and Thin Films, Washington, DC: American Chemical Society, 1997.
    3. Edelstein, A. S., Cammarata, R. C., Nanomaterials: Synthesis, Properties, and Applications, Philadelphia, PA: Institute of Physics, 1996. CrossRef
    4. Wang, J. Z., Zheng, Z. H., Li, H. W. etal., Dewetting of conducting polymer inkjet droplets on patterned surfaces, Nature Mater., 2004, 3(3): 171-76. CrossRef
    5. Nagai, H., Segawa, H., Energy-storable dye-sensitized solar cell with a polypyrrole electrode, Chem. Commun., 2004, (8): 974-75. CrossRef
    6. Forzani, E. S., Zhang, H. Q., Nagahara, L. A. etal., A conducting polymer nanojunction sensor for glucose detection, Nano Lett., 2004, 4(9): 1785-788. CrossRef
    7. Martin, C. R., Kohli, P., The emerging field of nanotube biotechnology, Nature Rew. Drug Discovery, 2003, 2(1): 29-7. CrossRef
    8. Jager, E. W. H., Smela, E., Inganas, O., Microfabricating conjugated polymer actuators, Science, 2000, 290(5496): 1540-545. CrossRef
    9. Martin, C. R., Nanomaterials—a membrane-based synthetic approach, Science, 1994, 266(5193): 1961-966. CrossRef
    10. Popovic, M. M., Grgur, B. N., Miskovic-Stankovic, V. B., Studies on electrochemically deposited PANI and PANI/epoxy coatings on mild steel in acid sulfate solution, Progress in Org. Coatings, 2005, 52(4): 359-65. CrossRef
    11. Lee, K. H., Heeger, A. J., Crossover to negative dielectric response in the low-frequency spectra of metallic polymers, Phys. Rev. B., 2003, 68: Art. No. 035201.
    12. Parthasarathy, R. V., Martin, C. R., Enzyme and chemical encapsulation in polymeric microcapsules, J. Appl. Polym. Sci., 1996, 62(6): 875-86. CrossRef
    13. Yu, A., Meiser, F., Cassagneau, T. etal., Fabrication of polymer nanoparticle composite inverse Oopals by a one-stage electrochemical co-deposition process, Nano Lett., 2004, 4(1): 177-81. CrossRef
    14. Zhang, L. J., Wan, M. X., Self-assembly of polyaniline—From nanotubes to hollow microspheres, Adv. Funct. Mater., 2003, 13(10): 815-20. CrossRef
    15. Yang, Y. S., Liu, J., Wan, M. X., Self-assembled conducting polypyrrole micro/nanotubes, Nanotechnology, 2002, 13(6): 771-73. CrossRef
    16. Zhang, L. J., Wan, M. X., Synthesis and characterization of self-assembled polyaniline nanotubes doped with D-10-camphorsulfonic acid, Nanotechnology, 2002, 13(6): 750-55. CrossRef
    17. Wei, Z. X., Wan, M. X., Hollow microspheres of polyaniline synthesized with an aniline emulsion template, Adv. Mater., 2002, 14(18): 1314-318. CrossRef
    18. Wan, M. X., Huang, K., Zhang, L. J. {etet al.}, Nanotubes of conducting polyaniline and polypyrrole, International Journal of NonlinearSciences and Numerical Simulation, 2002, 3(3-): 465-68.
    19. Fleischer, R. L., Price, P. B., Walker, R. M., Nuclear Tracks in Solids, Berkeley, CA: Univ. of California Press, 1975.
    20. Almawiawi, D., Coombs, N., Moskovits, M., Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size, J. Appl. Phys., 1991, 70(8): 4421-425. CrossRef
    21. Foss, C. A., Hornyal, G. L., Stocher, J. A. etal., Optical properties of composite membranes containing arrays of nanoscopic gold cylinders, J. Phys. Chem., 1992, 96(19): 7497-499. CrossRef
    22. Foss, C. A., Hornyak, G. L., Stockert, J. A. etal., Template-synthesized nanoscopic gold particles—optical-spectra and the effects of particle-size and shape, J. Phys. Chem., 1994, 98(11): 2963-971. CrossRef
    23. Cai, Z., Martin, C. R., Electronically conductive polymer fibers with mesocopic diameters show enhanced electronic conductivities, J. Am. Chem. Soc., 1989, 111(11): 4138-139. CrossRef
    24. Parthasarathy, R. V., Martin, C. R., Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization, Nature, 1994, 369(6478): 298-01. CrossRef
    25. Penner, R. M., Martin, C. R., Controlling the morphology of electronically conductive polymers, J. Electrochem. Soc., 1986, 133(10): 2206-207. CrossRef
    26. Burford, R. P., Tongtam, T., Conducting polymers with controlled fibrillar morphology, J. Mater. Sci., 1991, 26(12): 3264-270. CrossRef
    27. Fu, M. X., Zhu, Y. F., Tan, R. Q. etal., Aligned polythiophene micro- and nano-tubules, Adv. Mater., 2001, 13(24): 1874-877. CrossRef
    28. Cao, J., Sun, J. Z., Shi, G. Q. etal., Photovoltaic properties of polythiophene nano-tuble films, Materials Chemistry and Physics, 2003, 82(1): 44-8. CrossRef
    29. Fu, M. X., Chen, F. E., Shi, G. Q. etal., Electrochemical fabrication of aligned microtubular heterjunctions of poly(p-phenlene) and polythiophene, J. Mater. Chem., 2002, 12(8): 2331-333. CrossRef
    30. Zhang, J. X., Shi, G. Q., Liu, C. etal., Electrochemical fabrication of polythiophene film coated metallic nanowire arrays, J. Mater. Sci., 2003, 38(11): 2423-427. CrossRef
    31. Zhang, J. X., Shi, G. Q., Chen, F. etal., Aligned polythiophene coated gold nanowires, Synth. Met., 2003, 135(1-): 217-18. CrossRef
    32. Martin, C. R., Van Dyke, L. S., Cai, Z. etal., Template-synthesis of organic microtubules, J. Am. Chem. Soc., 1990, 112(24): 8976-977. CrossRef
    33. Liang, W., Martin, C. R., Template-synthesized polyacetylene fribrils show enhanced supermolecular order, J. Am. Chem. Soc., 1990, 112(26): 9666-668. CrossRef
    34. Menon, V. P., Lei, J. T, Martin, C. R., Investigation of molecular and supermolecular structure in template-synthesized polypyrrole tubules and fibrils, Chem. Mater., 1996, 8(9): 2382-390. CrossRef
    35. Cepak, V. M., Martin, C. R., Preparation of polymeric micro- and nanostructures using a template-based deposition method, Chem. Mater., 1999, 11(5): 1363-367. CrossRef
    36. Piraux, L., Dubois, S., Duvail, J. L. etal., Fabrication and properties of organic and metal nanocylinders in nanoporous membranes, J. Mater. Res., 1999, 14(7): 3042-050. CrossRef
    37. Demoustier-Champagne, S., Stavaux, P. Y., Effect of electrolyte concentration and nature on the morphology and the electrical properties of electropolymerized polypyrrole nanotubules, Chem. Mater., 1999, 11(3): 829-34. CrossRef
    38. Atchison, S. N., Burford, R. P., Darragh, T. A. etal., Morphology of high surface area polypyrrole structures, Polymer Int., 1991, 26: 261-66. CrossRef
    39. Shi, G. Q., Jin, S., Xue, G. et al., A conducting polymer film stronger than aluminum, Science, 1995, 267(5200): 994-96. CrossRef
    40. Shi, G. Q., Xue, G., Li, C. et al., Uniaxial oriented poly(p-phenylene) fibrils and films, Macromolecules, 1994, 27(13): 3678-679. CrossRef
    41. Shi, G. Q., Li, C., Liang, Y. Q., High-strength conducting polymers prepared by electrochemical polymerization in boron trifluoride diethyl etherate solution, Adv. Mater., 11(13): 1145-146.
    42. Qu, L. T., Shi, G. Q., Crystalline oligopyrene nanowires with multicolored emission, Chem. Comm, 2004, 4(24): 2800-801. CrossRef
    43. He, Y. H., Yuan, J. Y., Shi, G. Q., Fabrication of gold nanocrystal-coated polypyrrole nanotubules, J. Mater. Chem., 2005, 15(8): 859-62. CrossRef
    44. Barthet, C., Armes, S. P., Lascelles, S. F. et al., Synthesis and characterization of micro-sized polyaniline-coated polystyrene latexes, Langmuir, 1998, 14(8): 2032-041. CrossRef
    45. Okubo, M., Fujii, S., Minami, H., Production of electrically conductive, core/shell polystyrene/polyaniline composite particles by chemical oxidative seeded dispersion polymerization, Colloid Polym. Sci., 2001, 279(2): 139-45. CrossRef
    46. Caruso, F., Hollow capsule processing through colloidal templating and self-assembly, Chem. Eur. J., 2000, 6(3): 413-19. CrossRef
    47. Stejskal, J., Kratochvil, P., Armes, S. P. et al., Polyaniline dispersions: stabilization by colloidal silica particles, Macromolecules, 1996, 29(21): 6814-819. CrossRef
    48. Jun, J. B., Kim, J. W., Lee, J. W. et al., Spherical polarization body: Synthesis of monodisperse micron-sized polyaniline composite particles, Macromol. Rapid Comm., 2001, 22(12): 937-40. CrossRef
    49. Marinakos, S. M., Shultz, D. A., Feldheim, D. L., Gold nanoparticles as templates for the synthesis of hollow nanometer-sized conductive polymer capsules, Adv. Mater., 1999, 11(1): 34-7. CrossRef
    50. Cairns, D. B., Armes, S. P., Breme,r L. G. B., Synthesis and characterization of submicrometer-sized polypyrrole-polystyrene composite particles, Langmuir, 1999, 15(23): 8052-058. CrossRef
    51. Cairns, D. B., Armes, S. P., Chehimi, M. M. et al., X-ray photoelectron spectroscopy characterization of submicrometer-sized polypyrrole -Polystyrene composites, Langmuir, 1999, 15(23): 8059-066. CrossRef
    52. Khan, M. A., Armes, S. P., Synthesis and characterization of micrometer-sized poly(3,4 ethylenedioxythiophene)-coated polystyrene latexes, Langmuir, 1999, 15(10): 3469-475. CrossRef
    53. Hao, L. Y., Zhu, C. L., Chen, C. N. et al., Fabrication of silica core-conductive polymer polypyrrole shell composite particles and polypyrrole capsule on monodispersed silica templates, Synth. Met., 2003, 139(2): 391-96. CrossRef
    54. Gangopadhyay, R., De, A., Conducting polymer nanocomposites: A brief overview, Chem. Mater., 2000, 12(3): 608-22. CrossRef
    55. Park, M. K., Onishi, K., Locklin, J. et al., Self-assembly and characterization of polyaniline and sulfonated polystyrene multilayer-coated colloidal particles and hollow shells, Langmuir, 2003, 19(20): 8550-554. CrossRef
    56. Braun, P. V., Wiltzius, P., Microporous materials—Electrochemically grown photonic crystals, Nature, 1999, 402(6762): 603-04. CrossRef
    57. Lee, Y. C., Kuo, T. J., Hsu, C. J. et al., Fabrication of 3D macroporous structures of II–VI and III–V semiconductors using electrochemical deposition, Langmuir, 2002, 18(25): 9942-946. CrossRef
    58. Sumida, T., Wada, Y., Kitamura, T. et al., Electrochemical preparation of macroporous polypyrrole films with regular arrays of interconnected spherical voids, Chem. Commun., 2000, 0(17): 1613-614. CrossRef
    59. Cassagneau, T., Caruso, F., Semiconducting polymer inverse opals prepared by electropolymerization, Adv. Mater., 2002, 14(1): 34-8. CrossRef
    60. Wang, D. Y., Caruso, F., Fabrication of polyaniline inverse opals via templating ordered colloidal assemblies, Adv. Mater., 2001, 13(5): 350-53. CrossRef
    61. Noll, J. D., Nicholson, M. A., Van Patten, P. G. et al., Template electropolymerization of polypyrrole nanostructures on highly ordered pyrolytic graphite stage and pit defects, J. Electrochem. Soc., 1998, 145(10): 3320-328. CrossRef
    62. Myrick, M. L., Noll, J. D., Nicholson, M. A., Modeling of growth morphology of underpotential electropolymerization of pyrrole on graphite, J. Electrochem. Soc., 1998, 145(1): 179-85. CrossRef
    63. Hou, H. Q., Jun, Z., Reuning, A. et al., Poly(p-xylylene) nanotubes by coating and removal of ultrathin polymer template fibers, Macromolecules, 2002, 35(7): 2429-431. CrossRef
    64. Fan, J. H., Wan, M. X., Zhu, D. B. et al., Synthesis and properties of carbon nanotube-polypyrrole composites, Synth. Met., 1999, 102(1-): 1266-267. CrossRef
    65. Chen, G. Z., Shaffer, M. S. P., Coleby, D. et al., Carbon nanotube and polypyrrole composites: Coating and doping, Adv. Mater., 2000, 12(7): 522-25. CrossRef
    66. Downs, C., Nugent, J., Ajayan, P. M. et al., Efficient polymerization of aniline at carbon nanotube electrodes, Adv. Mater., 1999, 11(12): 1028-031. CrossRef
    67. Gao, M., Huang, S. M., Dai, L. M. et al., Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers, Angew. Chem. Int. Edit., 2000, 39(20): 3664-667.
    68. McConnell, G. A., Gast, A. P., Huang, J. S. et al., Disorder-order transition in soft sphere polymer micelles, Phys. Rev. Lett., 1993, 71(13): 2102-105. CrossRef
    69. Wei, Z. X., Zhang, L. J., Yu, M. et al., Self-assembling sub-micrometer-sized tube junctions and dendrites of conducting polymers, Adv. Mater., 2003, 15(16): 1382-385. CrossRef
    70. Wei, Z. X., Zhang, Z. M., Wan, M. X., Formation mechanism of self-assembled polyaniline micro/nanotubes, Langmuir, 2002, 18(3): 917-21. CrossRef
    71. Huang, Z. M., Shi, G. Q., Zhang, J. X. et al., Template-free electrosynthesis of aligned poly(p-phenylene) microtubules, Chinese Science Bulletin, 2003, 48(5): 434-36. CrossRef
    72. Jang, J., Yoon, H., Facile fabrication of polypyrrole nanotubes using reverse microemulsion polymerization, Chem. Commun., 2003, 3(6): 720-21. CrossRef
    73. Qu, L. T., Shi, G. Q., Hollow microstructures of polypyrrole doped by poly(styrene sulfonic acid), Journal of Polymer Science: Part A: Polymer Chemistry, 2004, 42(13): 3170-177. CrossRef
    74. Qu, L. T., Shi, G. Q., Yuan, J. Y. et al., Preparation of polypyrrole microstructures by direct electrochemical oxidation of pyrrole in an aqueous solution of camphorsulfonic acid, J. Electroanal. Chem., 2004, 561(1-): 149-56. CrossRef
    75. Qu, L. T., Shi, G. Q., Chen, F. E. et al., Electrochemical growth of polypyrrole microcontainers, Macromolecules, 2003, 36(4): 1063-067. CrossRef
    76. Yuan, J. Y., Zhang, D. Q., Qu, L. T., Direct electrochemical generation of conducting polymer microcontainers on silicon substrate, Polym. Int., 2004, 53(12): 2125-129. CrossRef
    77. Liu, J., Wan, M. X., Synthesis, characterization and electrical properties of microtubules of polypyrrole synthesized by a template-free method, J. Mater. Chem., 2001, 11(2): 404-07. CrossRef
    78. Mcconnell, G. A., Lin, M. Y., Gast, A. P., Long-range order in polymeric micelles under steady shear, Macromolecules, 1995, 28(20): 6754-764. CrossRef
    79. McConnell, G. A., Gast, A. P., Melting of ordered arrays and shape transitions in highly concentrated diblock copolymer solutions, Macromolecules, 1997, 30(3): 435-44. CrossRef
    80. McConnell, G. A., Gast, A. P., Predicting disorder-order phase transitions in polymeric micelles, Phys. Rev. E, 1996, 54(5): 5447-455. CrossRef
    81. Jenekhe, S. A., Chen, X. L., Self-assembly of ordered microporous materials from rod-coil block copolymers, Science, 1999, 283(5400): 372-75. CrossRef
    82. Bjornholm, T., Hassenkam, T., Greve, D. R. et al., Polythiophene nanowires, Adv. Mater., 1999, 11(14): 1218-221. CrossRef
    83. Kosonen, H., Ruokolainen, J., Knaapila, M. et al., Nanoscale conducting cylinders based on self-organization of hydrogen-bonded polyaniline supramolecules, Macromolecules, 2000, 33(23): 8671-675. CrossRef
    84. Holdcroft, S., Patterning p-Conjugated Polymers, Adv. Mater., 2001, 13(23): 1753-765. CrossRef
    85. Xia, Y. N., Whitesides, G. M., Soft Lithography, Angew. Chem. Int. Ed., 1998, 37(5): 550-75. CrossRef
    86. Okazaki, S., Resolution limits of optical lithography, J. Vac. Sci. Technol. B, 1991, 9(6): 2829-833. CrossRef
    87. Jeong, H. J., Markle, D. A., Owen, G. et al., The future of optical lithography, Solid State Technol., 1994, 37(4): 39-7.
    88. Levenson, M. D., Extending optical lithography to the gigabit era, Solid State Technol., 1995, 38(2): 57-6.
    89. Geppert, L., Semiconductor lithography for the next millennium, IEEE Spectrum, 1996, 33(4): 33-8. CrossRef
    90. Huber, T. E., Luo, L., Far-infrared propagation in metal wire microstructures, Appl. Phys. Lett., 1997, 70(19): 2502-504. CrossRef
    91. Hoyer, P., Baba, N., Masuda, H., Small quantum-sized cds particles assembled to form a regularly nanostructured porous film, Appl. Phys. Lett., 1995, 66(20): 2700-702. CrossRef
    92. Masuda, H., Fukuda, K., Ordered metal nanohole arrays made by a 2-stage replication of honeycomb structures of anodic alumina, Science, 1995, 268(5216): 1466-468. CrossRef
    93. Hoyer, P., Semiconductor nanotube formation by a two-stage template process, Adv. Mater., 1996, 8(10): 857-59. CrossRef
    94. Lehmann, H. W., Widmer, R., Ebnoether, M. et al., Fabrication of submicron crossed square wave gratings by dry etching and thermoplastic replication techniques, J. Vac. Sci. Technol. B, 1983, 1(4): 1207-210. CrossRef
    95. Schlereth, K. H., B?tther, H., Embossed grating lead chalcogenide distributed-feedbaclasers, J. Vac. Sci. Technol. B, 1992, 10(1): 114-17. CrossRef
    96. Emmelius, M., Pawlowski, G., Vollmann, H. W., Materials for optical data storage, Angew. Chem. Int. Ed., 1989, 28(11): 1445-471.
    97. Chou, S. Y., Krauss, P. R., Renstrom, P. J., Imprint of sub-25 nm vias and trenches in polymers, Appl. Phys. Lett., 1995, 67(21): 3114-116. CrossRef
    98. Chou, S. Y., Krauss, P. R., Renstrom, P. J., Imprint lithography with 25-nanometer resolution, Science, 1996, 272(5258): 85-7. CrossRef
    99. Haverkorn, H. C., Rijsewijk, P. E., Legierse, J. et al., Manufacture of laservision video discs by a photopolymerization process, Philips Tech. Rev., 1982, 40: 287-97.
    100. Kloosterboer, J. G., Lippits, G. J. M., Meinders, H. C., Photopolymerizable lacquers for laservision video discs, Philips Tech. Rev., 1982, 40:298-09.
    101. Terris, B. D., Mamin, H. J., Best, M. E. et al., Nanoscale replication for scanning probe data storage, Appl. Phys. Lett., 1996, 69(27): 4262-264. CrossRef
    102. Rebhan, U., Endert, H., Zaal, G., Micromanufacturing benefits from excimer-laser development, Laser Focus World, 1994, 30(11): 91-6.
    103. Weiss, S. A., Think small-lasers compete in micromachining, Photon Spectra, 1995, 29(10): 108-14.
    104. Roberts, M. A., Rossier, J. S., Bercier, P. et al., UV laser machined polymer substrates for the development of microdiagnostic systems, Anal. Chem., 1997, 69(11): 2035-042. CrossRef
    105. Kim, D. Y., Tripathy, S. K., Li, L. et al., Laser-induced holographic surface-relief gratings on nonlinear-optical polymer-films, Appl. Phys. Lett., 1995, 66(10): 1166-168. CrossRef
    106. Mullenborn, M., Dirac, H., Petersen, J. W., Silicon nanostructures produced by laser direct etching, Appl. Phys. Lett., 1995, 66(22): 3001-003. CrossRef
    107. Kramer, N., Niesten, M., Schonenberger, C., Resistless high-resolution optical lithography on silicon, Appl. Phys. Lett., 1995, 67(20): 2989-991. CrossRef
    108. D?ring, M., Ink-jet printing, Philips Tech. Rev., 1982, 40(7): 192-98.
    109. Anczurowski, E., Oliver, J., Marchessault, R. H., New papers for new printers, Chem.Tech., 1986, 16(5): 304-10.
    110. Blanchard, A. P., Kaiser, R. J., Hood, L. E., High-density oligonucleotide arrays, Biosens. Bioelectron., 1996, 11(6-): 687-90. CrossRef
    111. Lemmo, A. V., Fisher, J. T., Geysen, H. M. et al., Characterization of an inkjet chemical microdispenser for combinatorial library synthesis, Anal. Chem., 1997, 69(4): 543-51. CrossRef
    112. Kumar, A., Whitesides, G. M., Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink-followed by chemical etching, Appl. Phys. Lett., 1993, 63(14): 2002-004. CrossRef
    113. Xia, Y. N., Kim, E., Zhao, X. M. et al., Complex optical surfaces formed by replica molding against elastomeric masters, Science, 1996, 273(5273): 347-49. CrossRef
    114. Zhao, X. M., Xia, Y. N., Whitesides, G. M., Fabrication of threedimensional micro-structures: Microtransfer molding, Adv. Mater., 1996, 8(10): 837-40. CrossRef
    115. Kim, E., Xia, Y. N., Whitesides, G. M., Polymer microstructures formed by molding in capillaries, Nature, 1995, 376(6541): 581-84. CrossRef
    116. Kim, E., Xia, Y. N., Zhao, X. M. et al., Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers, Adv. Mater., 1997, 9(8): 651-54.
    117. Yuan, J. Y., Qu, L. T., Shi, G. Q. et al., Linear attangement of polypyrrole microcontainers, 2004, (8): 994-95.
    118. Qin, D., Xia, Y. N., Rogers, J. A., Jackman, R. J. et al., Microfabrication, microstructures and microsystems. Microsystem technology in chemistry and life science, Topics in Current Chemistry, 1997, 194: 1-0. CrossRef
    119. Choi, S. J., Park, S. M., Electrochemical growth of nanosized conducting polymer wires on gold using molecular templates, Adv. Mater., 2000, 12(20): 1547-549. CrossRef
    120. Jér?me, C., Jér?me, R., Electrochemical synthesis of polypyrrole nanowires, Angew. Chem. Int. Ed., 1998, 37(18): 2488-490. CrossRef
    121. Huang, L. M., Wang, Z. B., Wang, H. T. et al., Polyaniline nanowires by electropolymerization from liquid crystalline phases, J. Mater. Chem., 2002, 12(2): 388-91. CrossRef
    122. Goren, M., Qi, Z. G., Lennox, R. B., Selective templated growth of polypyrrole strands on lipid tubule edges, Chem. Mater., 2000, 12(5): 1222-228. CrossRef
    123. Shiratori, S. S., Mori, S., Ikezaki, K., Wire bonding over insulating substrates by electropolymerization of polypyrrole using a scanning micro-needle, Sensors and Actuators B, 1998, 49(1-): 30-3. CrossRef
    124. Kondo, T., Ishii, A., Munekata, H., Nanoscale polydiacetylene wire structures prepared by molecular beam deposition on semiconductor substrates, Physica. E, 1998, 2(1-): 991-95. CrossRef
  • 作者单位:Gewu Lu (1)
    Feng’en Chen (1)
    Xufeng Wu (1)
    Liangti Qu (1)
    Jiaxin Zhang (1)
    Gaoquan Shi (1)

    1. Department of Chemistry, Tsinghua University, 100084, Beijing, China
  • ISSN:1861-9541
文摘
Conducting polymeric materials with micro-/ nano-structures have potential applications in fabrication of various optical, electronic, sensing and electrochemical devices. This is mainly because these materials not only possess the characteristics of conducting polymers, but also have special functions based on their micro- or nano-structures. In this review, we summarize the recent work on “soft-and “hard-template-guided syntheses of micro-/nano-structured conducting polymers and open up the prospects of the main trends in this field.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700