Frustration Free Gapless Hamiltonians for Matrix Product States
详细信息    查看全文
  • 作者:C. Fernández-González (1) (2)
    N. Schuch (3) (4)
    M. M. Wolf (5)
    J. I. Cirac (6)
    D. Pérez-García (2) (7)
  • 刊名:Communications in Mathematical Physics
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:333
  • 期:1
  • 页码:299-333
  • 全文大小:3,709 KB
  • 参考文献:1. Affleck A., Kennedy T., Lieb E.H., Tasaki H.: Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115, 477 (1988) CrossRef
    2. Anderson P.W.: The resonating valence bond state in La_2CuO_4 and superconductivity. Science 235(4793), 1196-198 (1987) CrossRef
    3. Arad, I., Kitaev, A., Landau, Z., Vazirani, U.: An area law and sub-exponential algorithm for 1D systems. arXiv:1301.1162 [quant-ph]
    4. Balents L.: Spin liquids in frustrated magnets. Nature 464, 199-08 (2010) CrossRef
    5. Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics I and II. Springer, Berlin (1979) CrossRef
    6. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001). arXiv:quant-ph/0004051
    7. Chen X., Zeng B., Gu Z.C., Chuang I., Wen X.G.: Tensor product representation of topological ordered phase: necessary symmetry conditions. Phys. Rev. B 82, 165119 (2010) CrossRef
    8. Chen, X., Gu, Z.-C., Wen, X.-G.: Classification of gapped symmetric phases in 1D spin systems. Phys. Rev. B 83, 035107 (2011). arXiv:1008.3745 [cond-mat]
    9. Cirac, J.I., Michalakis, S., Pérez-García, D., Schuch, N.: Robustness in projected entangled pair states. Phys. Rev. B 88, 115108 (2013). arXiv:1306.4003 [cond-mat.str-el]
    10. Conway J.B.: A Course in Functional Analysis. Springer, Berlin (1990)
    11. Fannes M., Nachtergaele B., Werner R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443-90 (1992) CrossRef
    12. Fernández-González, C., Schuch, N., Wolf, M.M., Cirac, J.I., Pérez-García, D.: Gapless Hamiltonians for the toric code using the PEPS formalism. Phys. Rev. Lett. 109, 260401 (2012). arXiv:1111.5817
    13. Fidkowsk L., Kitaev, A.: Topological phases of fermions in one dimension. Phys. Rev. B 83, 075103 (2011). arXiv:1008.4138 [cond-mat]
    14. Greenberger, D.M., Horne, M., Zeilinger, A.: In: Kafatos, M. (ed.) Bells Theorem, Quantum Theory, and Conceptions of the Universe. Kluwer Academic, Dordrecht (1989)
    15. Hastings, M.B.: An Area Law for One Dimensional Quantum Systems. J. Stat. Mech. P08024 (2007)
    16. Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2-0 (2003). arXiv:quant-ph/9707021
    17. Lieb E., Schultz T., Mattis D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16(3), 407-66 (1961) CrossRef
    18. Nachtergaele, B.: The spectral gap for some spin chains with discrete symmetry breaking. Commun. Math. Phys. 175, 565-06 (1996). arXiv:cond-mat/9410110v1
    19. Nachtergaele, B.: Quantum spin systems (2004). arxiv.org/abs/math-ph/0409006v1
    20. Pérez-García, D., Verstraete, F., Wolf, M.M., Cirac, J.I.: Matrix product state representations. Quant. Inf. Comput. 7, 401 (2007). quant-ph/0608197
    21. Pérez-García, D., Verstraete, F., Cirac, J.I., Wolf, M.M.: PEPS as unique groun
  • 作者单位:C. Fernández-González (1) (2)
    N. Schuch (3) (4)
    M. M. Wolf (5)
    J. I. Cirac (6)
    D. Pérez-García (2) (7)

    1. Departamento de Física de los Materiales, Universidad Nacional de Educación a Distancia (UNED), 28040, Madrid, Spain
    2. Departamento de Análisis Matemático and IMI, Universidad Complutense de Madrid, 28040, Madrid, Spain
    3. Institut für Quanteninformation, RWTH Aachen, 52056, Aachen, Germany
    4. Institute for Quantum Information, California Institute of Technology, MC 305-16, Pasadena, CA, 91125, USA
    5. Department of Mathematics, Technische Universit?t München, 85748, Garching, Germany
    6. Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748, Garching, Germany
    7. Instiuto de Ciencias Matemticas, ICMAT (CSIC-UAM-UC3M-UCM), Campus de Cantoblanco, 28049, Madrid, Spain
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Quantum Physics
    Quantum Computing, Information and Physics
    Complexity
    Statistical Physics
    Relativity and Cosmology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0916
文摘
For every matrix product state (MPS) one can always construct a so-called parent Hamiltonian. This is a local, frustration free, Hamiltonian which has the MPS as ground state and is gapped. Whenever that parent Hamiltonian has a degenerate ground state space (the so-called non-injective case), we construct another ‘uncle-Hamiltonian which is also local and frustration free, has the same ground state space, but is gapless, and its spectrum is \({\mathbb{R}^+}\) . The construction is obtained by linearly perturbing the matrices building up the state in a random direction, and then taking the limit where the perturbation goes to zero. For MPS where the parent Hamiltonian has a unique ground state (the so-called injective case) we also build such uncle Hamiltonian with the same properties in the thermodynamic limit.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700