Finite-difference strategy for elastic wave modelling on curved staggered grids
详细信息    查看全文
  • 作者:C. A. Pérez Solano ; D. Donno ; H. Chauris
  • 关键词:Elastic wave propagation ; Seismic modelling ; Topography ; Curved grids
  • 刊名:Computational Geosciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:20
  • 期:1
  • 页码:245-264
  • 全文大小:3,799 KB
  • 参考文献:1.Aki, K., Richards, P.G.: Quantitative seismology. W.H. Freeman & Co (1980)
    2.Appelö, D., Petersson, N.A.: A stable finite difference method for the elastic wave equation on complex geometries with free surfaces. Commun. Comput. Phys. 5(1), 86–107 (2009)
    3.Bérenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)CrossRef
    4.Berg, P., If, P., Nilsen, P., Skovgaard, O.: Analytical reference solutions: advanced seismic modeling. In: Helbig, K. (ed.) Modeling the Earth for Oil Exploration, pp. 421–427. Pergamon Press (1994)
    5.Bohlen, T., Saenger, E.H.: Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves. Geophysics 71(4), 109–115 (2006)CrossRef
    6.Brossier, R., Virieux, J., Operto, S.: Parsimonious finite-volume frequency-domain method for 2-D p-SV-wave modelling. Geophys. J. Int. 175, 541–559 (2008)CrossRef
    7.Chapman, C.H.: Fundamental of seismic waves propagation. Cambridge University Press, Cambridge (2004)CrossRef
    8.Cohen, G.: Méthodes numériques d’ordre élevé pour les ondes en régime transitoire. INRIA (1994)
    9.Collino, F., Tsogka, C.: Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics 66, 294–307 (2001)CrossRef
    10.de la Puente, J., Ferrer, M., Hanzich, M., Castillo, J.E., Cela, J.M.: Mimetic seismic wave modelling including topography on deformed staggered grids. Geophysics 79(3), T125–T141 (2014)CrossRef
    11.Dovgilovich, L., Sofronov, I.: High-accuracy finite-difference schemes for solving elastodynamic problems in curvilinear coordinates within multiblock approach. Appl. Numer. Math. 93, 176–194 (2015)CrossRef
    12.Dunkin, J.W.: Computation of modal solutions in layered elastic media at high frequencies. Bull. Seismol. Soc. Am. 55, 335–358 (1965)
    13.Garvin, W.: Exact transient solution of buried line source problem. Proc. R. Soc. Lond. 234, 528–541 (1956)CrossRef
    14.Hestholm, S., Ruud, B.: 2D finite-difference elastic wave modeling including surface topography. Geophys. J. Int. 118(2), 643–670 (1994)CrossRef
    15.Hestholm, S., Ruud, B.: 3-D finite-difference elastic wave modeling including surface topography. Geophysics 63(2), 613–622 (1998)CrossRef
    16.Hestholm, S., Ruud, B.: 2D surface topography boundary conditions in seismic wave modelling. Geophys. Prospect. 49, 445–460 (2001)CrossRef
    17.de Hoop, A.T.: A modification of Cagniard’s method for solving seismic pulse problems. Appl. Sci. Res. B 8, 349–356 (1960)CrossRef
    18.Kaser, M., Dumbser, M.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I The two-dimensional isotropic case with external source terms. Geophys. J. Int. 166, 855–877 (2006)CrossRef
    19.Kaser, M., Igel, H.: Numerical simulation of 2D wave propagation on unstructured grids using explicit differential operators. Geophys. Prospect. 49, 607–619 (2001)CrossRef
    20.Komatitsch, D., Martin, R.: An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics 72(5), 155–167 (2007)CrossRef
    21.Komatitsch, D., Vilotte, J.P.: The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 88(2), 368–392 (1998)
    22.Komatitsch, D., Coutel, F., Mora, P.: Tensorial formulation of the wave equation for interfaces. Geophys. J. Int. 127, 156–168 (1996)CrossRef
    23.Kozdon, J.E., Dunham, E.M., Nordström, J.: Simulation of dynamic earthquake ruptures in complex geometries using high-order finite difference methods. J. Sci. Comput. 55(1), 92–124 (2013)CrossRef
    24.Kristek, J., Moczo, P., Archuleta, R.J.: Efficient methods to simulate planar free surface in the 2D 4th-order staggered-grid finite-difference schemes. Stud. Geophys. Geod. 46, 355–381 (2002)CrossRef
    25.Kristekova, M., Kristek, J., Moczco, P., Day, S.: Misfit criteria for quantitative comparison of seismograms. Bull. Seismol. Soc. Am. 96(5), 1836–1850 (2006)CrossRef
    26.Lamb, H.: Exact transient solution of buried line source problem. Philos. Trans. R. Soc. Lond. 204, 1–42 (1904)CrossRef
    27.Levander, A.R.: Fourth-order finite-difference p-SV seismograms. Geophysics 53, 1425–1436 (1988)CrossRef
    28.Lisitsa, V., Vishnevsky, D.: Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity. Geophys. Prospect. 58, 619–635 (2010)CrossRef
    29.Lisitsa, V., Vishnevsky, D., Tcheverda, V.: Numerical simulation of seismic waves in models with anisotropic formations: coupling Virieux and Lebedev finite difference schemes. Comput. Geosci. 16, 1135–1152 (2012)CrossRef
    30.Lombard, B., Piraux, J.: Numerical treatment of two-dimensional interfaces for acoustic and elastic waves. J. Comput. Phys. 195, 90–116 (2004)CrossRef
    31.Lombard, B., Piraux, J., Gélis, C., Virieux, J.: Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves. Geophys. J. Int. 172, 252–261 (2007)CrossRef
    32.Malvern, L.E.: Introduction to the mechanics of a continuous medium. Prentice-Hall, Series in Engineering of the Physical Sciences, New Jersey (1969)
    33.McConnell, A.J.: Applications of tensor analysis. Dover Publications, USA (1957)
    34.Mittet, R.: Free-surface boundary conditions for elastic staggered-grid modeling schemes. Geophysics 67, 1616–1623 (2002)CrossRef
    35.Moczo, P., Robertsson, J.O.A., Eisner, L.: The finite-difference time-domain method for modeling of seismic wave propagation Advances in Wave Propagation in Heterogeneous Earth, vol. 48. Academic Press, UK (2007)
    36.Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-time signal processing. Academic Press, New Jersey (1998)
    37.Pérez Solano, C.A., Donno, D., Chauris, H.: Alternative waveform inversion for surface wave analysis in 2-D media. Geophys. J. Int. 198, 1359–1372 (2014)CrossRef
    38.Pujol, J.: Elastic wave propagation and generation in seismology (2003)
    39.Robertsson, J.: A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography. Geophysics 61, 1921–1934 (1996)CrossRef
    40.Rojas, O., Otero, B., Castillo, J.E., Day, S.M.: Low dispersive modelling of Rayleigh waves on partly-staggered grids. Comput. Geosci. 18, 29–43 (2014)CrossRef
    41.Saenger, E.H., Gold, N., Shapiro, S.A.: Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion 31, 77–92 (2000)CrossRef
    42.Tarrass, I., Giraud, L., Thore, P.: New curvilinear scheme for elastic wave propagation in presence of curved topography. Geophys. Prospect. 59, 889–906 (2011)CrossRef
    43.Vinokur, M.: Conservation equations of gasdynamics in curvilinear coordinates systems. J. Comput. Phys. 14, 105–125 (1974)CrossRef
    44.Virieux, J.: P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51, 889–901 (1986)CrossRef
    45.Virieux, J., Calandra, H., Plessix, R É: A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging. Geophys. Prospect. 59, 794–813 (2011)CrossRef
    46.Xu Y, Xia J, Miller RD: Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach. Geophysics 75(5), SM147–SM153 (2007)
    47.Zhang, J.: Quadrangle-grid velocity-stress finite-difference method for elastic-wave-propagation simulation. Geophys. J. Int. 131, 127–134 (1997)CrossRef
    48.Zhang, W., Chen, X.: Traction image method for irregular free surface boundaries in finite difference seismic wave simulation. Geophys. J. Int. 167, 337–353 (2006)CrossRef
    49.Zhang, W., Zhang, Z., Chen, X.: Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids. Geophys. J. Int. 190, 358–378 (2012)CrossRef
  • 作者单位:C. A. Pérez Solano (1) (2)
    D. Donno (1)
    H. Chauris (1)

    1. Centre de Géosciences, MINES ParisTech PSL Research University, 35 rue St Honoré, 77300, Fontainebleau, France
    2. Shell Global Solutions International B.V., Kessler Park 1, 2288 GS, Rijswijk, The Netherlands
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematical Modeling and IndustrialMathematics
    Geotechnical Engineering
    Hydrogeology
    Soil Science and Conservation
  • 出版者:Springer Netherlands
  • ISSN:1573-1499
文摘
Waveform modelling is essential for seismic imaging and inversion. Because including more physical characteristics can potentially yield more accurate Earth models, we analyse strategies for elastic seismic wave propagation modelling including topography. We focus on using finite differences on modified staggered grids. Computational grids can be curved to fit the topography using distribution functions. With the chain rule, the elasto-dynamic formulation is adapted to be solved directly on curved staggered grids. The chain-rule approach is computationally less expensive than the tensorial approach for finite differences below the 6th order, but more expensive than the classical approach for flat topography (i.e. rectangular staggered grids). Free-surface conditions are evaluated and implemented according to the stress image method. Non-reflective boundary conditions are simulated via a Convolutional Perfect Matching Layer. This implementation does not generate spurious diffractions when the free-surface topography is not horizontal, as long as the topography is smoothly curved. Optimal results are obtained when the angle between grid lines at the free surface is orthogonal. The chain-rule implementation shows high accuracy when compared to the analytical solution in the case of the Lamb’s problem, Garvin’s problem and elastic interface.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700