An emerging role for gasotransmitters in the control of breathing and ionic regulation in fish
详细信息    查看全文
  • 作者:Steve Perry ; Y. Kumai ; C. S. Porteus ; V. Tzaneva…
  • 关键词:Nitric oxide ; Hydrogen sulphide ; Carbon monoxide ; Ionocyte ; Neuroepithelial cell ; Ventilation ; Chemoreception ; Osmoregulation ; Heme oxygenase ; Zebrafish
  • 刊名:Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:186
  • 期:2
  • 页码:145-159
  • 全文大小:1,115 KB
  • 参考文献:Abdallah SJ, Jonz MG, Perry SF (2015) Extracellular H+ induce Ca2+ signals in respiratory chemoreceptors of zebrafish. Eur J Physiol 467:399–413CrossRef
    Agné AM, Baldin J-P, Benjamin AR, Orogo-Wenn MC, Wichmann L, Olson KR, Walters DV, Althaus M (2015) Hydrogen sulfide decreases β-adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption. Am J Physiol 308:R636–R649
    Althaus M (2012) Gasotransmitters: novel regulators of epithelial Na+ transport? Front Physiol 3:83. doi:10.​3389/​fphys.​2012.​00083 PubMed PubMedCentral CrossRef
    Althaus M, Pichl A, Clauss WG, Seeger W, Fronius M, Morty RE (2011) Nitric oxide inhibits highly selective sodium channels and the Na+/K+-ATPase in H441 cells. Am J Respir Cell Mol Biol 44:53–65PubMed CrossRef
    Althaus M, Urness KD, Clauss WG, Baines DL, Fronius M (2012) The gasotransmitter hydrogen sulphide decreases Na+ transport across pulmonary epithelial cells. Br J Pharmacol 166:1946–1963PubMed PubMedCentral CrossRef
    Austgen JR, Hermann GE, Dantzler HA, Rogers RC, Kline DD (2011) Hydrogen sulfide augments synaptic neurotransmission in the nucleus of the solitary tract. J Neurphysiol 106:1822–1832CrossRef
    Avella M, Bornancin M (1989) A new analysis of ammonia and sodium transport through the gills of the freshwater rainbow trout (Salmo gairdneri). J Exp Biol 142:155–175
    Bailly Y, Dunel-Erb S, Laurent P (1992) The neuroepithelial cells of the fish gill filament—indolamine-immunocytochemistry and innervation. Anat Rec 233:143–161PubMed CrossRef
    Bischof G, Brenman J, Bredt DS, Machen TE (1995) Possible regulation of capacitative Ca2+ entry into colonic epithelial cells by NO and cGMP. Cell Calcium 17:250–262PubMed CrossRef
    Breves JP, Watanabe S, Kaneko T, Hirano T, Grau EG (2010) Prolactin restores branchial mitochondrion-rich cells expressing Na+/Cl− cotransporter in hypophysectomized Mozambique tilapia. Amer J Physiol 299:R702–R710
    Breves JP, McCormick SD, Karlstrom RO (2014) Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia. Gen Comp Endocrinol 203:21–28PubMed CrossRef
    Buckler K (2012) Effects of exogenous hydrogen sulphide on calcium signalling, background (TASK) K channel activity and mitochondrial function in chemoreceptor cells. Pflugers Arch Eur J Physiol 463:743–754CrossRef
    Burleson ML, Mercer SE, Wilk-Blaszczak MA (2006) Isolation and characterization of putative O2 chemoreceptor cells from the gills of channel catfish (Ictalurus punctatus). Brain Res 1092:100–107PubMed CrossRef
    Busby ER, Roch GJ, Sherwood NM (2010) Endocrinology of zebrafish: a small fish with a large gene pool. In: Perry SF, Ekker M, Farrell AP, Brauner CJ (eds) Zebrafish, vol 29. Fish Physiology. Academic Press, New York, pp 173–247
    Cabral PD, Garvin JL (2011) Luminal flow regulates NO and O2 − along the nephron. Am J Physiol 300:F1047–F1053CrossRef
    Campanucci VA, Nurse CA (2007) Autonomic innervation of the carotid body: role in efferent inhibition. Respir Physiol Neurobiol 157:83–92PubMed CrossRef
    Campanucci VA, Fearon IM, Nurse CA (2003) A novel O2-sensing mechanism in rat glossopharyngeal neurones mediated by a halothane-inhibitable background K+ conductance. J Physiol 548:731–743PubMed PubMedCentral CrossRef
    Chen L, Zhang J, Ding Y, Li H, Nie L, Zhou H, Tang Y, Zheng Y (2013) Site-specific hydrogen sulfide-mediated central regulation of respiratory rhythm in medullary slices of neonatal rats. Neuroscience 233:118–126PubMed CrossRef
    Coccimiglio ML, Jonz MG (2012) Serotonergic neuroepithelial cells of the skin in developing zebrafish: morphology, innervation and oxygen-sensitive properties. J Exp Biol 215:3881–3894PubMed CrossRef
    Coolidge EH, Ciuhandu CS, Milsom WK (2008) A comparative analysis of putative oxygen-sensing cells in the fish gill. J Exp Biol 211:1231–1242PubMed CrossRef
    Dallas ML, Scragg JL, Peers C (2009) Inhibition of L-type Ca2+ channels by carbon monoxide. Arterial chemoreceptors. Springer, Netherlands, pp 89–95CrossRef
    Denninger JW, Marletta MA (1999) Guanylate cyclase and the.NO/cGMP signaling pathway. Biochim Biophys Acta 1411:334–350PubMed CrossRef
    Donald JA, Forgan LG, Cameron MS (2015) The evolution of nitric oxide signalling in vertebrate blood vessels. J Comp Physiol B 185:153–171PubMed CrossRef
    Donatti AF, Soriano RN, Sabino JP, Branco LGS (2014) Endogenous hydrogen sulfide in the rostral ventrolateral medulla/Bötzinger complex downregulates ventilatory responses to hypoxia. Respir Physiol Neurobiol 200:97–104PubMed CrossRef
    Dymowska AK, Hwang P-P, Goss GG (2012) Structure and function of ionocytes in the freshwater fish gill. Respir Physiol Neurobiol 184:282–292PubMed CrossRef
    Dymowska AK, Schultz AG, Blair SD, Chamot D, Goss GG (2014) Acid-sensing ion channels are involved in epithelial Na+ uptake in the rainbow trout Oncorhynchus mykiss. Am J Physiol 307:C255–C265CrossRef
    Dymowska AK, Boyle D, Schultz AG, Goss GG (2015) The role of acid-sensing ion channels (ASICs) in epithelial Na+ uptake in adult zebrafish (Danio rerio). J Exp Biol 218:1244–1251PubMed CrossRef
    Ebbesson LOE, Tipsmark CK, Holmqvist B, Nilsen T, Andersson E, Stefansson SO, Madsen SS (2005) Nitric oxide synthase in the gill of Atlantic salmon: colocalization with and inhibition of Na+–K+-ATPase. J Exp Biol 208:1011–1017PubMed CrossRef
    Eisen JS, Smith JC (2008) Controlling morpholino experiments: don’t stop making antisense. Development 135:1735–1743PubMed CrossRef
    Erb A, Althaus M (2014) Actions of hydrogen sulfide on sodium transport processes across native distal lung epithelia (Xenopus laevis). PLoS One 9(6):e100971PubMed PubMedCentral CrossRef
    Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid–base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177PubMed CrossRef
    Farrugia G, Szurszewski JH (2014) Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology 147:303–313PubMed PubMedCentral CrossRef
    Filipovic MR (2015) Persulfidation (S-sulfhydration) and H2S. Handb Exp Pharmacol 230:29–59PubMed CrossRef
    Garvin JL, Hong NJ (1999) Nitric oxide inhibits sodium/hydrogen exchange activity in the thick ascending limb. Am J Physiol 277:F377–F382PubMed
    Garvin JL, Herrera M, Ortiz PA (2011) Regulation of renal NaCl transport by nitric oxide, endothelin, and ATP: clinical implications. Annu Rev Physiol 73:359–376PubMed CrossRef
    Gibbons SJ, Farrugia G (2004) The role of carbon monoxide in the gastrointestinal tract. J Physiol 556:325–336PubMed PubMedCentral CrossRef
    Gilmour KM, Perry SF (2007) Branchial chemoreceptor regulation of cardiorespiratory function. In: Hara TJ, Zielinski B (eds) Sensory systems neuroscience. Academic Press, New York, pp 97–151
    Gonzalez C, Almaraz L, Obeso A, Rigual R (1994) Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74:829–898PubMed
    Granjeiro ÉM, Machado BH (2009) NO in the caudal NTS modulates the increase in respiratory frequency in response to chemoreflex activation in awake rats. Respir Physiol Neurobiol 166:32–40PubMed CrossRef
    Guo Y, Duvall MD, Crow JP, Matalon S (1998) Nitric oxide inhibits Na+ absorption across cultured alveolar type II monolayers. Am J Physiol 274:L369–L377PubMed
    Haxhiu MA, Chang CH, Dreshaj IA, Erokwu B, Prabhakar NR, Cherniack NS (1995) Nitric oxide and ventilatory response to hypoxia. Respir Physiol 101:257–266PubMed CrossRef
    Hedrick MS, Chen AK, Jessop KL (2005) Nitric oxide changes its role as a modulator of respiratory motor activity during development in the bullfrog (Rana catesbeiana). Comp Biochem Physiol A 142:231–240CrossRef
    Hiroi J, Yasumasu S, McCormick SD, Hwang P-P, Kaneko T (2008) Evidence for an apical Na+ Cl− cotransporter involved in ion uptake in a teleost fish. J Exp Biol 211:2584–2599PubMed CrossRef
    Holmqvist B, Ellingsen B, Alm P, Forsell J, Øyan A-M, Goksøyr A, Fjose A, Seo H-C (2000) Identification and distribution of nitric oxide synthase in the brain of adult zebrafish. Neurosci Lett 292:119–122PubMed CrossRef
    Holmqvist B, Ellingsen B, Forsell J, Zhdanova I, Alm P (2004) The early ontogeny of neuronal nitric oxide synthase systems in the zebrafish. J Exp Biol 207:923–935PubMed CrossRef
    Hu H, Shi Y, Chen Q, Yang W, Zhou H, Chen L, Tang Y, Zheng Y (2008) Endogenous hydrogen sulfide is involved in regulation of respiration in medullary slice of neonatal rats. Neuroscience 156:1074–1082PubMed CrossRef
    Hwang P-P (2009) Ion uptake and acid secretion in zebrafish (Danio rerio). J Exp Biol 212:1745–1752PubMed CrossRef
    Hwang P-P, Chou M-Y (2013) Zebrafish as an animal model to study ion homeostasis. Pflugers Arch Eur J Physiol 465:1233–1247CrossRef
    Hwang P-P, Lee T-H (2007) New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A 148:479–497CrossRef
    Hwang P-P, Lin L-Y (2014) Gill ionic transport, acid–base regulation and nitrogen excretion. In: Evans DH, Claiborne JB, Currie S (eds) Physiology of fishes. CRC Press, Boca Raton, pp 205–234
    Hwang P-P, Perry SF (2010) Ionic and acid–base regulation. In: Perry SF, Ekker M, Farrell AP, Brauner CJ (eds) Fish physiology, vol 29. Academic Press, San Diego, pp 311–344
    Hwang P-P, Lee T-H, Lin L-Y (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol 301:R28–R47CrossRef
    Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, Sander JD, Joung JK, Peterson RT, Yeh JR (2013a) Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8:e68708PubMed PubMedCentral CrossRef
    Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013b) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229PubMed PubMedCentral CrossRef
    Hyndman KA, Choe KP, Havird JC, Rose RE, Piermarini PM, Evans DH (2006) Neuronal nitric oxide synthase in the gill of the killifish, Fundulus heteroclitus. Comp Biochem Physiol B 144:510–519PubMed CrossRef
    Inokuchi M, Hiroi J, Watanabe S, Lee KM, Kaneko T (2008) Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities. Comp Biochem Physiol A 151:151–158CrossRef
    Ito Y, Kato A, Hirata T, Hirose S, Romero MF (2014) Na+/H+ and Na+/NH4 +-exchange activities of zebrafish NHE3b expressed in Xenopus oocytes. Am J Physiol 306:R315–R327
    Jackson KE, Jackson DW, Quadri S, Reitzell MJ, Navar LG (2011) Inhibition of heme oxygenase augments tubular sodium reabsorption. Am J Physiol 300:F941–F946
    Jonz MG, Nurse CA (2003a) Neuroepithelial cells and associated innervation of the zebrafish gill: a confocal immunofluorescence study. J Comp Neurol 461:1–17PubMed CrossRef
    Jonz MG, Nurse CA (2003b) Neuroepithelial cells and associated innervation of the zebrafish gill: a confocal immunofluorescence study. J Comp Neurol 461:1–17PubMed CrossRef
    Jonz MG, Nurse CA (2008) New developments on gill innervation: insights from a model vertebrate. J Exp Biol 211:2371–2378PubMed CrossRef
    Jonz MG, Zaccone G (2009) Nervous control of the gills. Acta Histochem 111:207–216PubMed CrossRef
    Jonz MG, Fearon IM, Nurse CA (2004) Neuroepithelial oxygen chemoreceptors of the zebrafish gill. J Physiol 560:737–752PubMed PubMedCentral CrossRef
    Kim D, Kim I, Wang J, White C, Carroll JL (2015) Hydrogen sulfide and hypoxia-induced changes in TASK (K2P3/9) activity and intracellular Ca2+ concentration in rat carotid body glomus cells. Respir Physiol Neurobiol 215:30–38PubMed CrossRef
    Kolluru GK, Shen X, Kevil CG (2013) A tale of two gases: NO and H2S, foes or friends for life? Redox Biol 1:313–318PubMed PubMedCentral CrossRef
    Kumai Y, Perry SF (2011) Ammonia excretion via Rhcg1 facilitates Na+ uptake in larval zebrafish, Danio rerio, in acidic water. Am J Physiol 301:R1517–R1528
    Kumai Y, Perry SF (2012) Mechanisms and regulation of Na+ uptake by freshwater fish. Respir Physiol Neurobiol 184:249–256PubMed CrossRef
    Kumai Y, Porteus CS, Kwong RWM, Perry SF (2015) Hydrogen sulfide inhibits Na+ uptake in larval zebrafish, Danio rerio. Pflugers Arch Eur J Physiol 467:651–664CrossRef
    Kumar P, Prabhakar NR (2012) Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol 2:141–219PubMed PubMedCentral
    Kwong RW, Perry SF (2015) Hydrogen sulfide promotes calcium uptake in larval zebrafish. Am J Physiol 309:C60–C69CrossRef
    Lee Y-C, Yan J-J, Cruz SA, Horng J-L, Hwang P-P (2011a) Anion exchanger 1b, but not sodium-bicarbonate cotransporter 1b, plays a role in transport functions of zebrafish H+-ATPase-rich cells. Am J Physiol 300:C295–C307CrossRef
    Lee ZW, Zhou J, Chen C-S, Zhao Y, Tan C-H, Li L, Moore PK, Deng L-W (2011b) The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo. PLoS One 6:e21077PubMed PubMedCentral CrossRef
    Levitt DG, Levitt MD (2015) Carbon monoxide: a critical quantitative analysis and review of the extent and limitations of its second messenger function. Clin Pharmacol 7:37–56PubMed PubMedCentral
    Li Q, Sun B, Wang X, Jin Z, Zhou Y, Dong L, Jiang L, Rong W (2010) A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium-activated potassium channels. Antioxid Redox Signal 12:1179–1189PubMed CrossRef
    Li L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51:169–187PubMed CrossRef
    Li FJ, Duggal RN, Oliva OM, Karki S, Surolia R, Wang Z, Watson RD, Thannickal VJ, Powel M, Watts S, Kulkarni T, Batra H, Bolisetty S, Agarwal A, Antony VB (2015) Heme oxygenase-1 protect Corexit 9500A-induced respiratory epithelial injury across species. PLoS One 10:e0122275PubMed PubMedCentral CrossRef
    Liao B-K, Chen R-D, Hwang P-P (2009) Expression regulation of Na+–K+-ATPase a1-subunit subtypes in zebrafish gill ionocytes. Am J Physiol 296:R1897–R1906
    Lipski J, McAllen RM, Spyer KM (1977) The carotid chemoreceptor input to the respiratory neurones of the nucleus of tractus solitarius. J Physiol 269:797–810PubMed PubMedCentral CrossRef
    Liu H, Mount DB, Nasjletti A, Wang W (1999) Carbon monoxide stimulates the apical 70-pS K+ channel of the rat thick ascending limb. J Clin Invest 103:963–970PubMed PubMedCentral CrossRef
    Makarenko VV, Nanduri J, Raghuraman G, Fox AP, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2012) Endogenous H2S is required for hypoxic sensing by carotid body glomus cells. Am J Physiol 303:C916–C923CrossRef
    McCormick SD (2001) Endocrine control of osmoregulation in teleost fish. Am Zool 41:781–794
    McCormick SD, Bradshaw D (2006) Hormonal control of salt and water balance in vertebrates. Gen Comp Endocrinol 147:3–8PubMed CrossRef
    Milsom WK (2012) New insights into gill chemoreception: receptor distribution and roles in water and air breathing fish. Respir Physiol Neurobiol 184:326–339PubMed CrossRef
    Milsom WK, Burleson ML (2007) Peripheral arterial chemoreceptors and the evolution of the carotid body. Respir Physiol Neurobiol 157:4–11PubMed CrossRef
    Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142PubMed
    Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220PubMed CrossRef
    Nielsen V, Baird M, Chen LAN, Matalon S (2000) DETANONOate, a nitric oxide donor, decreases amiloride-sensitive alveolar fluid clearance in rabbits. Am J Respir Crit Care Med 161:1154–1160PubMed CrossRef
    Olson KR (2005) Vascular actions of hydrogen sulfide in nonmammalian vertebrates. Antioxid Redox Signal 7:804–812PubMed CrossRef
    Olson KR (2008) Hydrogen sulfide and oxygen sensing: implications in cardiorespiratory control. J Exp Biol 211:2727–2734PubMed CrossRef
    Olson KR (2009) Is hydrogen sulfide a circulating “gasotransmitter” in vertebrate blood? Biochim Biophys Acta 1787:856–863PubMed CrossRef
    Olson KR (2011) Hydrogen sulfide is an oxygen sensor in the carotid body. Respir Physiol Neurobiol 179:103–110PubMed CrossRef
    Olson KR (2013a) Hydrogen sulfide as an oxygen sensor. Clin Chem Lab Med 51:623–632PubMed CrossRef
    Olson KR (2013b) Hydrogen sulfide: both feet on the gas and none on the brake? Front Physiol 4:2PubMed PubMedCentral CrossRef
    Olson KR (2014) Hydrogen sulfide as an oxygen sensor. Antioxid Redox Signal 22:377–397PubMed CrossRef
    Olson KR, Whitfield NL (2010) Hydrogen sulfide and oxygen sensing in the cardiovascular system. Antioxid Redox Signal 12:1219–1234PubMed CrossRef
    Olson KR, Dombkowski RA, Russell MJ, Doellman MM, Head SK, Whitfield NL, Madden JA (2006) Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol 209:4011–4023PubMed CrossRef
    Olson KR, Healy M, Zhaohong Q, Vulesevic B, Duff DW, Whitfield N, Yang G, Wang R, Perry SF (2008) Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors. Am J Physiol 295:R669–R680
    Olson KR, Donald JA, Dombkowski RA, Perry SF (2012) Evolutionary and comparative aspects of nitric oxide, carbon monoxide and hydrogen sulfide. Respir Physiol Neurobiol 184:117–129PubMed CrossRef
    Olson KR, DeLeon ER, Liu F (2014) Controversies and conundrums in hydrogen sulfide biology. Nitric Oxide 41C:11–26CrossRef
    Ortiz PA, Garvin JL (2000) Autocrine effects of nitric oxide on HCO3 − transport by rat thick ascending limb. Kidney Int 58:2069–2074PubMed CrossRef
    Ortiz PA, Hong NJ, Garvin JL (2001) NO decreases thick ascending limb chloride absorption by reducing Na+–K+-2Cl+-cotransporter activity. Am J Physiol 281:F819–F825
    Overholt JL, Prabhakar NR (1997) Ca2+ current in rabbit carotid body glomus cells is conducted by multiple types of high-voltage-activated Ca2+ channels. J Neurophysiol 78:2467–2474PubMed
    Overholt JL, Bright GR, Prabhakar NR (1996) Carbon monoxide and carotid body chemoreception. Adv Exp Med Biol 410:341–344PubMed CrossRef
    Pamenter ME, Go A, Fu Z, Powell FL (2015) No evidence of a role for neuronal nitric oxide synthase in the nucleus tractus solitarius in ventilatory responses to acute or chronic hypoxia in awake rats. J Appl Physiol 118:750–759PubMed CrossRef
    Pan T-C, Liao B-K, Huang C-J, Lin L-Y, Hwang P-P (2005) Epithelial Ca2+ channel expression and Ca2+ uptake in developing zebrafish. Am J Physiol 289:R1202–R1211
    Pearson RJ, Wilson T, Wang R (2006) Endogenous hydrogen sulfide and the cardiovascular system-what’s the smell all about? Clin Invest Med 29:146–150PubMed
    Peers C, Steele DS (2012) Carbon monoxide: a vital signalling molecule and potent toxin in the myocardium. J Mol Cell Cardiol 52:359–365PubMed CrossRef
    Peers C, Whyatt CN (1997) The role of maxiK channels on carotid body chemotransduction. Resp Physiol Neurobiol 157:75–82CrossRef
    Peng Y-J, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci USA 107:10719–10724PubMed PubMedCentral CrossRef
    Perry SF, Tzaneva V (2015) The sensing of respiratory gases in fish: Mechanisms and signalling pathways. Respir Physiol Neurobiol. doi:10.​1016/​j.​resp.​2015.​06.​007
    Perry SF, Wood CM (1989) Control and coordination of gas transfer in fishes. Can J Zool 67:2961–2970CrossRef
    Perry SF, Esbaugh A, Braun M, Gilmour KM (2009) Gas transport and gill function in water
    eathing fish. In: Glass ML, Wood SC (eds) Cardio-respiratory control in vertebrates: comparative and evolutionary aspects. Springer, Berlin, pp 5–42CrossRef
    Peter VS (2013) Nitric oxide rectifies acid–base disturbance and modifies thyroid hormone activity during net confinement of air
    eathing fish (Anabas testudineus Bloch). Gen Comp Endocrinol 181:115–121PubMed CrossRef
    Pierrefiche O, Maniak F, Larnicol N (2002) Rhythmic activity from transverse brainstem slice of neonatal rat is modulated by nitric oxide. Neuropharmacology 43:85–94PubMed CrossRef
    Plato CF, Stoos BA, Wang D, Garvin JL (1999) Endogenous nitric oxide inhibits chloride transport in the thick ascending limb. Am J Physiol 276:F159–F163PubMed
    Plato CF, Shesely EG, Garvin JL (2000) eNOS mediates l -arginine-induced inhibition of thick ascending limb chloride flux. Hypertension 35:319–323PubMed CrossRef
    Porteus CS, Brink DL, Coolidge EH, Fong AY, Milsom WK (2013) Distribution of acetylcholine and catecholamines in fish gills and their potential roles in the hypoxic ventilatory response. Acta Histochem 115:158–169PubMed CrossRef
    Porteus CS, Abdallah SJ, Pollack J, Kumai Y, Kwong RWM, Yew HM, Milsom WK, Perry SF (2014) The role of hydrogen sulphide in the control of breathing in hypoxic zebrafish (Danio rerio). J Physiol 592:3075–3088PubMed PubMedCentral CrossRef
    Porteus CS, Pollack J, Tzaneva V, Kwong RWM, Kumai Y, Abdallah SJ, Zaccone G, Lauriano ER, Milsom WK, Perry SF (2015) A role for nitric oxide in the control of breathing in zebrafish (Danio rerio). J Exp Biol. doi:10.​1242/​jeb.​127795 PubMed
    Pouokam E, Diener M (2011) Mechanisms of actions of hydrogen sulphide on rat distal colonic epithelium. Br J Pharmacol 162:392–404PubMed PubMedCentral CrossRef
    Pouokam E, Steidle J, Diener M (2011) Regulation of colonic ion transport by gasotransmitters. Biol Pharm Bull 34:789–793PubMed CrossRef
    Prabhakar NR (1998) Endogenous carbon monoxide in control of respiration. Respir Physiol 114:57–64PubMed CrossRef
    Prabhakar NR (1999) NO and CO as second messengers in oxygen sensing in the carotid body. Respir Physiol 115:161–168PubMed CrossRef
    Prabhakar NR (2012) Carbon monoxide (CO) and hydrogen sulfide (H2S) in hypoxic sensing by the carotid body. Respir Physiol Neurobiol 184:165–169PubMed PubMedCentral CrossRef
    Prabhakar NR (2013) Sensing hypoxia: physiology, genetics and epigenetics. J Physiol 591:2245–2257PubMed PubMedCentral CrossRef
    Prabhakar NR, Semenza GL (2012) Gaseous messengers in oxygen sensing. J Mol Med (Berl) 90:265–272CrossRef
    Prabhakar NR, Dinerman JL, Agani FH, Snyder SH (1995) Carbon monoxide: a role in carotid body chemoreception. Proc Natl Acad Sci USA 92:1994–1997PubMed PubMedCentral CrossRef
    Prevot-D’Alvise N, Richard S, Coupe S, Bunet R, Grillasca JP (2013) Acute toxicity of a commercial glyphosate formulation on European sea bass (Dicentrarchus labrax L.): gene expressions of heme oxygenase-1 (HO-1), acetylcholinesterase (AchE) and aromatases (cyp19a and cyp19b). Cell Mol Biol 59:1906–1917
    Qin Z, Lewis J, Perry SF (2010) Zebrafish (Danio rerio) gill neuroepithelial cells are sensitive chemoreceptors for environmental CO2. J Physiol 588:61–872CrossRef
    Rochette L, Cottin Y, Zeller M, Vergely C (2013) Carbon monoxide: mechanisms of action and potential clinical implications. Pharmacol Ther 137:133–152PubMed CrossRef
    Sardet C, Pisam M, Maetz J (1979) The surface epithelium of teleostean fish gills. Cellular and junctional adaptations of the chloride cell in relation to salt adaptation. J Cell Biol 80:96–117PubMed CrossRef
    Scapagnini G, D’Agata V, Calabrese V, Pascale A, Colombrita C, Alkon D, Cavallaro S (2002) Gene expression profiles of heme oxygenase isoforms in the rat brain. Brain Res 954:51–59PubMed CrossRef
    Schicho R, Krueger D, Zeller F, Von Weyhern CWH, Frieling T, Kimura H, Ishii I, De Giorgio R, Campi B, Schemann M (2006) Hydrogen sulfide is a novel prosecretory neuromodulator in the guinea-pig and human colon. Gastroenterology 131:1542–1552PubMed CrossRef
    Schleiffer R, Galluser M, Raul F (1995) Intestinal absorption of calcium in vivo is dependent on endogenous nitric oxide. J Pharmacol Exp Ther 275:1427–1432PubMed
    Schultheiss G, Seip G, Kocks SL, Diener M (2002) Ca2+-dependent and -independent Cl− secretion stimulated by the nitric oxide donor, GEA 3162, in rat colonic epithelium. Eur J Pharmacol 444:21–30PubMed CrossRef
    Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2008) 3-mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11:703–714CrossRef
    Shih T-H, Horng J-L, Liu S-T, Hwang P-P, Lin L-Y (2012) Rhcg1 and NHE3b are involved in ammonium-dependent sodium uptake by zebrafish larvae acclimated to low-sodium water. Am J Physiol 302:R84–R93
    Steidle J, Diener M (2011) Effects of carbon monoxide on ion transport across rat distal colon. Am J Physiol 300:G207–G216
    Summers BA, Overholt JL, Prabhakar NR (1999) Nitric oxide inhibits L-type Ca2+ current in glomus cells of the rabbit carotid body via a cGMP-independent mechanism. J Neurophysiol 81:1449–1457PubMed
    Takei Y (2008) Exploring novel hormones essential for seawater adaptation in teleost fish. Gen Comp Endocrinol 157:3–13PubMed CrossRef
    Takei Y, McCormick SD (2012) Hormonal control of fish euryhalinity. In: McCormick S, Farrell AP, Brauner CJ (eds) Fish physiology, vol 32. Academic Press, New York, pp 69–123
    Takei Y, Hiroi J, Takahashi H, Sakamoto T (2014) Diverse mechanisms for body fluid regulation in teleost fishes. Am J Physiol 307:R778–R792
    Telezhkin V, Brazier SP, Cayzac SH, Wilkinson WJ, Riccardi D, Kemp PJ (2010) Mechanism of inhibition by hydrogen sulfide of native and recombinant BKCa channels. Respir Physiol Neurobiol 172:169–178PubMed CrossRef
    Tenhunen R, Marver HS, Schmid R (1969) Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem 244:6388–6394PubMed
    Tipsmark CK, Madsen SS (2003) Regulation of Na+/K+-ATPase activity by nitric oxide in the kidney and gill of the brown trout (Salmo trutta). J Exp Biol 206:1503–1510PubMed CrossRef
    Tota B, Amelio D, Pellegrino D, Ip YK, Cerra MC (2005) NO modulation of myocardial performance in fish hearts. Comp Biochem Physiol A 142:164–177CrossRef
    Tzaneva V, Perry SF (2010) Control of breathing in goldfish (Carassius auratus) experiencing thermally induced gill remodelling. J Exp Biol 213:3666–3675PubMed CrossRef
    Tzaneva V, Perry SF (2014) Heme oxygenase-1 (HO-1) mediated respiratory responses to hypoxia in the goldfish, Carassius auratus. Respir Physiol Neurobiol 199:1–8PubMed CrossRef
    Van LA, Bolle T, Fannes W, Lauweryns JM (1999) The pulmonary neuroendocrine system: the past decade. Arch Histol Cytol 62:1–16CrossRef
    Voelker D, Stetefeld N, Schirmer K, Scholz S (2008) The role of cyp1a and heme oxygenase 1 gene expression for the toxicity of 3,4-dichloroaniline in zebrafish, Danio rerio embryos. Aquat Toxicol 86:112–120PubMed CrossRef
    Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798PubMed CrossRef
    Wang R (2003) The gasotransmitter role of hydrogen sulfide. Antioxid Redox Signal 5:493–501PubMed CrossRef
    Wang ZZ, Stensaas LJ, Bredt DS, Dinger B, Fidone SJ (1994) Localization and actions of nitric oxide in the cat carotid body. Neuroscience 60:275–286PubMed CrossRef
    Wang T, Sterling H, Shao WA, Yan Q, Bailey MA, Giebisch G, Wang WH (2003) Inhibition of heme oxygenase decreases sodium and fluid absorption in the loop of Henle. Am J Physiol 285:F484–F490CrossRef
    Wang D, Zhong XP, Qiao ZX, Gui JF (2008) Inductive transcription and protective role of fish heme oxygenase-1 under hypoxic stress. J Exp Biol 211:2700–2706PubMed CrossRef
    Wang Y-F, Tseng Y-C, Yan J-J, Hiroi J, Hwang P-P (2009) Role of SLC12A10.2, a Na–Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am J Physiol 296:R1650–R1660
    Wilkinson WJ, Kemp PJ (2011) Carbon monoxide: an emerging regulator of ion channels. J Physiol 589:3055–3062PubMed PubMedCentral CrossRef
    Wu L, Wang R (2005) Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 57(4):585–630PubMed CrossRef
    Yang T, Kline D, Prekumar D, Mishra R, Prabhakar N (1998) Evidence for a physiological role of endogenous carbon monoxide (CO) in respiratory responses to hypoxia in rats. FASEB J 12:495
    Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607PubMed CrossRef
    Yuan S, Patel RP, Kevil CG (2015) Working with nitric oxide and hydrogen sulfide in biological systems. Am J Physiol 308:L403–L415
    Zaccone G, Tagliafierro G, Goniakowska-Witalinska L, Fasulo S, Ainis L, Mauceri A (1989) Serotonin-like immunoreactive cells in the pulmonary epithelium of ancient fish species. Histochemistry 92:61–63PubMed CrossRef
    Zaccone G, Ainis L, Mauceri A, Lo Cascio P, Francesco LG, Fasulo S (2003) NANC nerves in the respiratory air sac and branchial vasculature of the indian catfish, Heteropneustes fossilis. Acta Histochem 105:151–163PubMed CrossRef
    Zaccone G, Mauceri A, Fasulo S (2006) Neuropeptides and nitric oxide synthase in the gill and the air
    eathing organs of fishes. J Exp Zool 305A:428–439CrossRef
    Zhang L, Nurse CA, Jonz MG, Wood CM (2011) Ammonia sensing by neuroepithelial cells and ventilatory responses to ammonia in rainbow trout. J Exp Biol 214:2678–2689PubMed CrossRef
    Zhong XP, Wang D, Zhang YB, Gui JF (2008) Identification and characterization of hypoxia-induced genes in Carassius auratus blastulae embryonic cells using suppression subtractive hybridization. Comp Biochem Physiol B 152:161–170PubMed CrossRef
  • 作者单位:Steve Perry (1)
    Y. Kumai (1)
    C. S. Porteus (1) (2)
    V. Tzaneva (1)
    R. W. M. Kwong (1)

    1. Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N6N5, Canada
    2. Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Biomedicine
    Human Physiology
    Zoology
    Animal Physiology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-136X
文摘
Three gases comprising nitric oxide, carbon monoxide and hydrogen sulphide, collectively are termed gasotransmitters. The gasotransmitters control several physiological functions in fish by acting as intracellular signaling molecules. Hydrogen sulphide, first implicated in vasomotor control in fish, plays a critical role in oxygen chemoreception owing to its production and downstream effects within the oxygen chemosensory cells, the neuroepithelial cells. Indeed, there is emerging evidence that hydrogen sulphide may contribute to oxygen sensing in both fish and mammals by promoting membrane depolarization of the chemosensory cells. Unlike hydrogen sulphide which stimulates breathing in zebrafish, carbon monoxide inhibits ventilation in goldfish and zebrafish whereas nitric oxide stimulates breathing in zebrafish larvae while inhibiting breathing in adults. Gasotransmitters also modulate ionic uptake in zebrafish. Though nothing is known about the role of CO, reduced activities of branchial Na+/K+-ATPase and H+-ATPase activities in the presence of NO donors suggest an inhibitory role of NO in fish osmoregulation. Hydrogen sulphide inhibits Na+ uptake in zebrafish larvae and contributes to lowering Na+ uptake capacity in fish acclimated to Na+-enriched water whereas it stimulates Ca2+ uptake in larvae exposed to Ca2+-poor water. Keywords Nitric oxide Hydrogen sulphide Carbon monoxide Ionocyte Neuroepithelial cell Ventilation Chemoreception Osmoregulation Heme oxygenase Zebrafish

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700