Quantum key distribution using continuous-variable non-Gaussian states
详细信息    查看全文
  • 作者:L. F. M. Borelli ; L. S. Aguiar ; J. A. Roversi…
  • 关键词:Quantum cryptography ; Continuous variables ; Non ; Gaussian states
  • 刊名:Quantum Information Processing
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:15
  • 期:2
  • 页码:893-904
  • 全文大小:1,514 KB
  • 参考文献:1.Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175 (1984)
    2.Scarani, V., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)CrossRef ADS
    3.Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)CrossRef ADS
    4.Stucki, D., et al.: High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres. New J. Phys. 11, 075003 (2009)CrossRef ADS
    5.Ralph, T.C.: Continuous variable quantum cryptography. Phys. Rev. A 61, 010303(R) (1999)CrossRef MathSciNet
    6.Hillery, M.: Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000)CrossRef ADS
    7.Cerf, N.J., Lévy, M., Van Assche, G.: Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A 63, 052311 (2001)CrossRef ADS
    8.Horak, P.: The role of squeezing in quantum key distribution based on homodyne detection and post-selection. J. Mod. Opt. 51, 1249 (2004)CrossRef ADS MathSciNet MATH
    9.Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)CrossRef ADS
    10.Grosshans, F., et al.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238 (2003)CrossRef ADS
    11.Vidiella-Barranco, A., Borelli, L.F.M.: Continuous variable quantum key distribution using polarized coherent states. Int. J. Mod. Phys. B 20, 1287 (2006)CrossRef ADS MathSciNet
    12.Lorenz, S., Korolkova, N., Leuchs, G.: Continuous-variable quantum key distribution using polarization encoding and post selection. Appl. Phys. B 79, 273 (2004)CrossRef
    13.Namiki, R., Hirano, T.: Security of quantum cryptography using balanced homodyne detection. Phys. Rev. A 67, 022308 (2003)CrossRef ADS
    14.Leverrier, A., Grangier, P.: Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. 102, 180504 (2009)
    15.Peev, M., et al.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)CrossRef ADS
    16.Sasaki, M., et al.: Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 19, 10387 (2011)CrossRef ADS
    17.Jouguet, Paul, et al.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon. 7, 378 (2013)CrossRef ADS
    18.Leverrier, A. et al.: Quantum communications with Gaussian and non-Gaussian states of light. In: International Conference on Quantum Information, OSA Technical Digest (CD) (Optical Society of America, 2011), paper QMF1. http://​www.​opticsinfobase.​org/​abstract.​cfm?​URI=​ICQI-2011-QMF1
    19.Pariggi, V., Zavatta, A., Kim, M., Bellini, M.: Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890 (2007)CrossRef ADS
    20.Silberhorn, C., Ralph, T.C., Lütkenhaus, N., Leuchs, G.: Continuous variable quantum cryptography: beating the 3 dB loss limit. Phys. Rev. Lett. 89, 167901 (2002)CrossRef ADS
    21.Lütkenhaus, N.: Security against eavesdropping in quantum cryptography. Phys. Rev. A 54, 97 (1996)CrossRef ADS
    22.Dakna, M., Knöll, L., Welsch, D.-G.: Quantum state engineering using conditional measurement on a beam splitter. Eur. Phys. J. D 3, 295 (1998)CrossRef ADS
    23.Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492 (1991)CrossRef ADS
    24.Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660 (2004)CrossRef ADS
    25.Wang, Z., Yuan, H., Fan, H.: Nonclassicality of the photon addition-then-subtraction coherent state and its decoherence in the photon-loss channel. J. Opt. Soc. Am. B 28, 1964 (2011)CrossRef ADS
    26.Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)CrossRef ADS
    27.Hillery, M., et al.: Distribution functions in physics: fundamentals. Phys. Rep. 106, 121 (1984)CrossRef ADS MathSciNet
    28.Wu, J.W.: Violation of Bells inequalities and two-mode quantum-optical state measurement. Phys. Rev. A 61, 022111 (2000)CrossRef ADS
    29.Ou, Z.Y., Hong, C.K., Mandel, L.: Relation between input and output states for a beam splitter. Opt. Commun. 63, 118 (1987)CrossRef ADS
    30.Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)CrossRef ADS
    31.Shannon, C.E.: A Mathematical theory of communication. Bell Syst. Tech. J. 27, 379 (1948)CrossRef MathSciNet MATH
    32.Becir, A., Wahiddin, M.R.: Phase coherent states for enhancing the performance of continuous variable quantum key distribution. J. Phys. Soc. Jpn. 81, 034005 (2012)CrossRef ADS
  • 作者单位:L. F. M. Borelli (1)
    L. S. Aguiar (1)
    J. A. Roversi (1)
    A. Vidiella-Barranco (1)

    1. Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-859, Brazil
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Mathematics
    Engineering, general
    Computer Science, general
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-1332
文摘
In this work, we present a quantum key distribution protocol using continuous-variable non-Gaussian states, homodyne detection and post-selection. The employed signal states are the photon added then subtracted coherent states (PASCS) in which one photon is added and subsequently one photon is subtracted from the field. We analyze the performance of our protocol, compared with a coherent state-based protocol, for two different attacks that could be carried out by the eavesdropper (Eve). We calculate the secret key rate transmission in a lossy line for a superior channel (beam-splitter) attack, and we show that we may increase the secret key generation rate by using the non-Gaussian PASCS rather than coherent states. We also consider the simultaneous quadrature measurement (intercept-resend) attack, and we show that the efficiency of Eve’s attack is substantially reduced if PASCS are used as signal states. Keywords Quantum cryptography Continuous variables Non-Gaussian states

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700