Chemical imaging of lipid droplets in muscle tissues using hyperspectral coherent Raman microscopy
详细信息    查看全文
  • 作者:Nils Billecke (1)
    Gianluca Rago (1) (2) (3)
    Madeleen Bosma (4)
    Gert Eijkel (2)
    Anne Gemmink (5)
    Philippe Leproux (6) (7)
    Guillaume Huss (6)
    Patrick Schrauwen (4)
    Matthijs K. C. Hesselink (5)
    Mischa Bonn (1)
    Sapun H. Parekh (1)
  • 关键词:Lipid droplet ; Microscopy ; Chemical imaging ; Raman spectroscopy ; Multivariate analysis ; Hyperspectral
  • 刊名:Histochemistry and Cell Biology
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:141
  • 期:3
  • 页码:263-273
  • 全文大小:866 KB
  • 参考文献:1. Aguer C, Mercier J, Man CYW, Metz L, Bordenave S, Lambert K, Jean E, Lantier L, Bounoua L, Brun JF, de Mauverger ER, Andreelli F, Foretz M, Kitzmann M (2010) Intramyocellular lipid accumulation is associated with permanent relocation ex vivo and in vitro of fatty acid translocase (FAT)/CD36 in obese patients. Diabetologia 53(6):1151鈥?163. doi:10.1007/s00125-010-1708-x CrossRef
    2. Bosma M, Minnaard R, Sparks LM, Schaart G, Losen M, de Baets MH, Duimel H, Kersten S, Bickel PE, Schrauwen P, Hesselink MKC (2012) The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochem Cell Biol 137(2):205鈥?16. doi:10.1007/s00418-011-0888-x CrossRef
    3. Boxer SG, Kraft ML, Weber PK (2009) Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys 38(1):53鈥?4. doi:10.1146/annurev.biophys.050708.133634 CrossRef
    4. Centonze VE, White JG (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75(4):2015鈥?024 CrossRef
    5. Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, Summers SA (2003) A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 278(12):10297鈥?0303. doi:10.1074/jbc.M212307200 CrossRef
    6. Day JPR, Rago G, Domke KF, Velikov KP, Bonn M (2010) Label-free imaging of lipophilic bioactive molecules during lipid digestion by multiplex coherent anti-Stokes Raman scattering microspectroscopy. J Am Chem Soc 132(24):8433鈥?439. doi:10.1021/ja102069d CrossRef
    7. Fletcher JS, Vickerman JC (2013) Secondary ion mass spectrometry: characterizing complex samples in two and three dimensions. Anal Chem 85(2):610鈥?39. doi:10.1021/Ac303088m CrossRef
    8. Gawlik KI, Durbeej M (2011) Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies. Skelet Muscle 1(1):9. doi:10.1186/2044-5040-1-9 CrossRef
    9. Goodpaster BH, Theriault R, Watkins SC, Kelley DE (2000) Intramuscular lipid content is increased in obesity and decreased by weight loss. Metab Clin Exp 49(4):467鈥?72. doi:10.1016/s0026-0495(00)80010-4 CrossRef
    10. Goodpaster BH, He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinolo Metab 86(12):5755鈥?761 CrossRef
    11. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932鈥?40. doi:10.1038/nmeth818 CrossRef
    12. Lee D-E, Kehlenbrink S, Lee H, Hawkins M, Yudkin JS (2009) Getting the message across: mechanisms of physiological cross talk by adipose tissue. Am J Physiol Endocrinol Metab 296(6):E1210鈥揈1229. doi:10.1152/ajpendo.00015.2009 CrossRef
    13. Liu Y, Lee YJ, Cicerone MT (2009) Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform. Opt Lett 34(9):1363鈥?365 CrossRef
    14. Matthaus C, Chernenko T, Newmark JA, Warner CM, Diem M (2007) Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy. Biophys J 93(2):668鈥?73. doi:10.1529/biophysj.106.102061 CrossRef
    15. Matthaus C, Krafft C, Dietzek B, Brehm BR, Lorkowski S, Popp J (2012) Noninvasive imaging of intracellular lipid metabolism in macrophages by Raman Microscopy in combination with stable isotopic labeling. Anal Chem 84(20):8549鈥?556. doi:10.1021/ac3012347 CrossRef
    16. Nielsen J, Mogensen M, Vind BF, Sahlin K, Hojlund K, Schroder HD, Ortenblad N (2010) Increased subsarcolemmal lipids in type 2 diabetes: effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. Am J Physiol Endocrinol Metab 298(3):E706鈥揈713. doi:10.1152/ajpendo.00692.2009 CrossRef
    17. Pohling C, Buckup T, Motzkus M (2011) Hyperspectral data processing for chemoselective multiplex coherent anti-Stokes Raman scattering microscopy of unknown samples. J Biomed Opt 16(2). doi:10.1117/1.3533309
    18. Pohling C, Buckup T, Pagenstecher A, Motzkus M (2011b) Chemoselective imaging of mouse brain tissue via multiplex CARS microscopy. Biomed Optics Express 2(8):2110鈥?116. doi:10.1364/BOE.2.002110 CrossRef
    19. Puppels GJ, Demul FFM, Otto C, Greve J, Robertnicoud M, Arndtjovin DJ, Jovin TM (1990) Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 347(6290):301鈥?03. doi:10.1038/347301a0 CrossRef
    20. Rinia HA, Burger KNJ, Bonn M, Muller M (2008) Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy. Biophys J 95(10):4908鈥?914. doi:10.1529/biophysj.108.137737 CrossRef
    21. Rompp A, Spengler B (2013) Mass spectrometry imaging with high resolution in mass and space. Histochem Cell Biol 139(6):759鈥?83. doi:10.1007/s00418-013-1097-6 CrossRef
    22. Seppanen-Laakso T, Laakso I, Hiltunen R (2002) Analysis of fatty acids by gas chromatography, and its relevance to research on health and nutrition. Anal Chim Acta 465(1鈥?):39鈥?2. doi:10.1016/s0003-2670(02)00397-5 CrossRef
    23. Shaw CS, Jones DA, Wagenmakers AJ (2008) Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem Cell Biol 129(1):65鈥?2. doi:10.1007/s00418-007-0349-8 CrossRef
    24. Soboll S SR, Freisl M, Elbers R, Heldt HW (1976). In: JM Tager HS, JR Williamson (ed) Use of Isolated Liver Cells and Kidney Tubules in Metabolic Studies, North-Holland, Amsterdam and Oxford, pp 29鈥?0
    25. Sollner TH (2007) Lipid droplets highjack SNAREs. Nat Cell Biol 9(11):1219鈥?220. doi:10.1038/ncb1107-1219 CrossRef
    26. Spangenburg EE, Pratt SJP, Wohlers LM, Lovering RM (2011) Use of BODIPY (493/503) to Visualize Intramuscular Lipid Droplets in Skeletal Muscle. J Biomed Biotechnol. doi:10.1155/2011/598358
    27. Srere PA (1980) The infrastructure of the mitochondrial matrix. Trends in biochemical sciences 5(5):120鈥?21. doi:http://dx.doi.org/10.1016/0968-0004(80)90051-1
    28. Stratford S, Hoehn KL, Liu F, Summers SA (2004) Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J Biol Chem 279(35):36608鈥?6615. doi:10.1074/jbc.M406499200 CrossRef
    29. Tolles WM, Nibler JW, McDonald JR, Harvey AB (1977) Review of theory and application of coherent anti-stokes Raman-spectroscopy (CARS). Appl Spectrosc 31(4):253鈥?71. doi:10.1366/000370277774463625 CrossRef
    30. Vaandrager AB, Testerink N, Ajat M, Houweling M, Brouwers J, Pully VV, van Manen HWJ, Otto C, Helms JB (2009) Raman imaging and lipidomic analysis of lipid droplets in (activated) hepatic stellate cells. Chem Phys Lipids 160:S7鈥揝8. doi:10.1016/j.chemphyslip.2009.06.109 CrossRef
    31. van Manen HJ, Kraan YM, Roos D, Otto C (2005) Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proc Natl Acad Sci USA 102(29):10159鈥?0164. doi:10.1073/pnas.0502746102 CrossRef
    32. Vartiainen EM, Rinia HA, Muller M, Bonn M (2006) Direct extraction of Raman line-shapes from congested CARS spectra. Opt Express 14(8):3622鈥?630. doi:10.1364/oe.14.003622 CrossRef
    33. Wang H, Zhao J, Lee AM, Lui H, Zeng H (2012) Improving skin Raman spectral quality by fluorescence photobleaching. Photodiagn Photodyn Ther 9(4):299鈥?02. doi:10.1016/j.pdpdt.2012.02.001
    34. Weigert R, Sramkova M, Parente L, Amornphimoltham P, Masedunskas A (2010) Intravital microscopy: a novel tool to study cell biology in living animals. Histochem Cell Biol 133(5):481鈥?91. doi:10.1007/s00418-010-0692-z CrossRef
  • 作者单位:Nils Billecke (1)
    Gianluca Rago (1) (2) (3)
    Madeleen Bosma (4)
    Gert Eijkel (2)
    Anne Gemmink (5)
    Philippe Leproux (6) (7)
    Guillaume Huss (6)
    Patrick Schrauwen (4)
    Matthijs K. C. Hesselink (5)
    Mischa Bonn (1)
    Sapun H. Parekh (1)

    1. Molecular Spectroscopy Department, Max Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
    2. FOM Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
    3. Deloitte Consulting B.V., Laan van Kronenburg 2, 1183 AS, Amstelveen, The Netherlands
    4. Department of Human Biology, School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, 6200 MD, Maastricht, The Netherlands
    5. Department of Movement Sciences, School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, 6200 MD, Maastricht, The Netherlands
    6. Leukos Innovative Optical Systems, ESTER Technopole, 1 avenue d鈥橢ster, 87069, Limoges Cedex, France
    7. Xlim Research Institute, CNRS-University of Limoges, 123 Avenue Albert Thomas, 87060, Limoges Cedex, France
  • ISSN:1432-119X
文摘
The accumulation of lipids in non-adipose tissues is attracting increasing attention due to its correlation with obesity. In muscle tissue, ectopic deposition of specific lipids is further correlated with pathogenic development of insulin resistance and type 2 diabetes. Most intramyocellular lipids are organized into lipid droplets (LDs), which are metabolically active organelles. In order to better understand the putative role of LDs in pathogenesis, insight into both the location of LDs and nearby chemistry of muscle tissue is very useful. Here, we demonstrate the use of label-free coherent anti-Stokes Raman scattering (CARS) microscopy in combination with multivariate, chemometric analysis to visualize intracellular lipid accumulations in ex vivo muscle tissue. Consistent with our previous results, hyperspectral CARS microscopy showed an increase in LDs in tissues where LD proteins were overexpressed, and further chemometric analysis showed additional features morphologically (and chemically) similar to mitochondria that colocalized with LDs. CARS imaging is shown to be a very useful method for label-free stratification of ectopic fat deposition and cellular organelles in fresh tissue sections with virtually no sample preparation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700