Characterization of the Quasi-Stationary State of an Impurity Driven by Monochromatic Light I: The Effective Theory
详细信息    查看全文
  • 作者:Jean-Bernard Bru (12) jb.bru@ikerbasque.org
    Walter de Siqueira Pedra (3) pedra@mathematik.uni-mainz.de
    Matthias Westrich (4) mcw@math.mcgill.ca
  • 刊名:Annales Henri Poincare
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:13
  • 期:6
  • 页码:1305-1370
  • 全文大小:1.1 MB
  • 参考文献:1. Bru, J.-B., Pedra, W., Westrich, M.: Characterization of the Quasi-Stationary State of an Impurity Driven by Monochromatic Light II: Microscopic Foundations. (2012, in preparation)
    2. Abou-Salem W.K., Fr枚hlich J.: Cyclic thermodynamic processes and entropy production. J. Stat. Phys. 126(3), 431–466 (2007)
    3. Alicki, R., Lendi, K.: Quantum dynamical semigroups and applications. In: Lecture Notes in Physics, vol. 286. Springer, New York (2007)
    4. Attal, S., Joye, A., Pillet, C.-A. (eds.): Open Quantum Systems I: The Hamiltonian Approach. Lecture Notes in Mathematics, vol. 1880. Springer, Berlin (2006)
    5. Attal, S., Joye, A., Pillet, C.-A. (eds.): Open Quantum Systems II: The Markovian Approach. Lecture Notes in Mathematics, vol. 1881. Springer, Berlin (2006)
    6. Attal, S., Joye, A., Pillet, C.-A. (eds.): Open Quantum Systems III: Recent Developments. Lecture Notes in Mathematics, vol. 1882. Springer, Berlin (2006)
    7. Bach V., Fr枚hlich J., Sigal I.M.: Return to Equilibrium. J. Math. Phys. 41(6), 3985–4060 (2000)
    8. Jakšić V., Pillet C.-A.: On a model for quantum friction III: ergodic properties of the Spin-Boson system. Commun. Math. Phys. 178(3), 627–651 (1996)
    9. Jakšić V., Pillet C.-A.: Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226, 131–162 (2002)
    10. Merkli M., M眉ck M., Sigal I.M.: Theory of non-equilibrium stationary states as a theory of resonances. Ann. Henri Poincar茅 8, 1539–1593 (2007)
    11. Einstein, A.: Zur Quantentheorie der Strahlung. Verh. d. Deutschen Phys. Gesellschaft 13 (1916)
    12. Berman G., Merkli M., Sigal I.M.: Resonance theory of decoherence and thermalization. Ann. Phys. 323, 373–412 (2008)
    13. Snitzer E., Young C.G.: Lasers. A Series of Advances, vol. 2. Edward Arnold, London (1968)
    14. Aspect A., Grynberg G., Fabre C.: Introduction to Quantum Optics, vol. XXIX. Cambridge University Press, Cambridge (2010)
    15. Bach, V., Merkli, M., Pedra, W., Sigal, I.M.: Rigorous Analysis of Suppression of Quantum Decoherence by Periodic Forcing. (2012, in preparation)
    16. Dicke R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)
    17. Hepp K., Lieb E.H.: Phase transitions in reservoir driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573–603 (1973)
    18. Hepp K., Lieb E.H.: On the superradiant phase transition for molecules in a quantized electromagnetic field: the Dicke Maser model. Ann. Phys. 76, 360–404 (1973)
    19. Hepp, K., Lieb, E.H.: The laser: a reversible quantum dynamical system with irreversible classical macroscopic motion. In: Moser, J. (ed.) Dynamical Systems, Theory and Applications. Lecture Notes in Physics, vol. 38, pp. 178–208 (1975)
    20. Alli G., Sewell G.L.: New methods and structures in the theory of the multi-mode Dicke laser model. J. Math. Phys. 36, 5598–5626 (1995)
    21. Sewell G.L.: Quantum Mechanics and its Emergent Macrophysics. Princeton University Press, Princeton (2002)
    22. Bagarello F.: Relations between the Hepp-Lieb and the Alli-Sewell laser models. Ann. Henri Poincar茅 3, 983–1002 (2002)
    23. Bruneau L., Pillet C.-A.: Thermal relaxation of a QED cavity. J. Stat. Phys. 134, 1071–1095 (2009)
    24. Bratteli O., Robinson D.: Operator Algebras and Quantum Statistical Mechanics 1. Text and Monographs in Physics, 2nd edn. Springer, Berlin (1987)
    25. Bratteli O., Robinson D.: Operator Algebras and Quantum Statistical Mechanics 2. Text and Monographs in Physics, 2nd edn. Springer, Berlin (1996)
    26. Kato T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin-Heidelberg-New-York (1980)
    27. Derezinski, J., Fr眉boes, R.: Fermi golden rule and open quantum systems. In: Open Quantum Systems III, vol. 1882, pp. 67–116. Springer, Berlin (2006)
    28. Hepp K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)
    29. Westrich, M.: Asymptotisch offene Quantensysteme. Master’s thesis, Universit盲t Hamburg, II. Inst. f. Th. Physik (2008, in German)
    30. Spohn H.: An algebraic condition for the approach to equilibrium of an open n-level system. Lett. Math. Phys. 2, 33–38 (1977)
    31. Davies E.B.: Markovian master equations. Commun. Math. Phys. 39, 91–110 (1974)
    32. Davies E.B.: Markovian master equations III. Ann. Henri Poincar茅 XI, 265–273 (1975)
    33. Davies E.B.: Markovian master equations II. Math. Ann. 219, 147–158 (1976)
    34. Alicki R.: On the detailed balance condition for non-Hamiltonian systems. Rep. Math. Phys. 10, 249–258 (1976)
    35. Frigerio A., Gorini V., Kossakowski A., Verri M.: Quantum detailed balance condition and KMS condition. Commun. Math. Phys. 57, 97–110 (1977)
    36. Klenke A.: Probability Theory: A Comprehensive Course. Springer, London (2007)
    37. Bach V., Chen T., Fr枚hlch J., Sigal I.M.: Smooth Feshbach map and operator-theoretic renormalization group methods. J. Funct. Anal. 203, 44–92 (2003)
    38. Joos E., Zeh H.D., Kiefer C., Giulini D.J.W., Kupsch J., Stamatescu I.-O.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (2003)
    39. Araki H., Wyss W.: Representations of canonical anticommutation relations. Helv. Phys. Acta 37, 136 (1964)
    40. Jakšić V., Pillet C.-A.: Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226, 131–162 (2002)
    41. Engel K.-J., Nagel R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, Berlin-Heidelberg-New-York (2000)
    42. Gorini V., Kossakowski A., Sudarshan E.C.G.: Completely positive dynamical semigroups of n-level systems. J. Math. Phys. 17, 821–825 (1976)
    43. Lindblad G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)
  • 作者单位:1. Departamento de Matem谩ticas, Facultad de Ciencia y Tecnolog铆a, Universidad del Pa铆s Vasco, Apartado 644, 48080 Bilbao, Spain2. IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain3. Institut f眉r Mathematik, Johannes Gutenberg-Universit盲t, 55099 Mainz, Germany4. Department of Mathematics and Statistics, McGill University, Montreal, QC H3A 2K6, Canada
  • ISSN:1424-0661
文摘
We consider an impurity (N-level atom) driven by monochromatic light in a host environment which is a fermionic thermal reservoir. The external light source is a time-periodic perturbation of the atomic Hamiltonian stimulating transitions between two atomic energy levels E 1 and E N and thus acts as an optical pump. The purpose of the present work is the analysis of the effective atomic dynamics resulting from the full microscopic time-evolution of the compound system. We prove, in particular, that the atomic dynamics of population relaxes for large times to a quasi-stationary state, that is, a stationary state up to small oscillations driven by the external light source. This state turns out to be uniquely determined by a balance condition. The latter is related to “generalized Einstein relations” of spontaneous/stimulated emission/absorption rates, which are conceptually similar to the phenomenological relations derived by Einstein in 1916. As an application we show from quantum mechanical first principles how an inversion of population of energy levels of an impurity in a crystal can appear. Our results are based on the spectral analysis of the generator of the evolution semigroup related to a non-autonomous Cauchy problem effectively describing the atomic dynamics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700