The moduli spaces of Jacobians isomorphic to a product of two elliptic curves
详细信息    查看全文
  • 作者:Ernst Kani
  • 刊名:Collectanea Mathematica
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:67
  • 期:1
  • 页码:21-54
  • 全文大小:849 KB
  • 参考文献:1.Atkin, A., Lehner, J.: Hecke operators on \(\Gamma _0(m)\) . Math. Ann. 185, 134–160 (1970)MATH MathSciNet CrossRef
    2.Buell, D.: Binary Quadratic Forms. Springer, New York (1989)MATH CrossRef
    3.Chowla, S.: An extension of Heilbronn’s class-number theorem. Q. J. Math. 5, 304–307 (1934)MathSciNet CrossRef
    4.Cox, D.: Primes of the Form \(x^2 + ny^2\) . Wiley, New York (1989)
    5.Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. In: Modular functions of one variable II. Lecture Notes in Math., vol. 349. Springer, Berlin, pp. 143–316 (1973)
    6.Dickson, L.: Introduction to the Theory of Numbers. University of Chicago Press, Chicago (1929)MATH
    7.Earle, C.: The genus two Jacobians that are isomorphic to a product of elliptic curves. In: The Geometry of Riemann Surfaces and Abelian Varieties. Contemp. Math., vol. 397. AMS, Providence, pp. 27–36 (2006)
    8.Estes, D., Pall, G.: Spinor genera of binary quadratic forms. J. Number Theory 5, 421–432 (1973)MATH MathSciNet CrossRef
    9.Frei, G.: Euler’s convenient numbers. Math. Intell. 7(3), 55–58, 64 (1985)MATH MathSciNet CrossRef
    10.Frey, G., Kani, E.: Curves of genus 2 with elliptic differentials and associated Hurwitz spaces. In: Lachaud, G., Ritzenthaler, C., Tsfasman, M. (eds.) Arithmetic, Geometry, Cryptography and Coding Theory. Contemp. Math., vol. 487, pp. 33–81 (2009)
    11.Fulton, W.: Intersection Theory. Springer, Berlin (1984)MATH CrossRef
    12.Gauss, C.F.: Untersuchungen über die höhere Arithmetik. Translation of Disquisitiones Arithmeticae. Chelsea Reprint, New York (1981)
    13.Grube, F.: Ueber einige Euler’sche Sätze aus der Theorie der quadratischen Formen. Zeitschrift Math. Physik 19, 492–519 (1874)MATH
    14.Hall, N.: Binary quadratic discriminants with a single class in each genus. Math. Z. 44, 85–90 (1938)CrossRef
    15.Hayashida, T.: A class number associated with a product of two elliptic curves. Natur. Sci. Rep. Ochanomizu Univ. 16, 9–19 (1965)MathSciNet
    16.Hayashida, T.: A class number associated with the product of an elliptic curve with itself. J. Math. Soc. Japan 20, 26–43 (1968)MATH MathSciNet CrossRef
    17.Hayashida, T., Nishi, M.: Existence of curves of genus two on a product of two elliptic curves. J. Math. Soc. Japan 17, 1–16 (1965)MathSciNet CrossRef
    18.Humbert, G.: Sur les fonctions abéliennes singulières. I. J. de Math. (ser. 5) 5, 233–350 (1899). = Œuvres, Gauthier-Villars et Cie. Paris 1929, 297–401
    19.Ibukiyama, T., Katsura, T., Oort, F.: Supersingular curves of genus two and class numbers. Composit. Math. 57, 127–152 (1986)MATH MathSciNet
    20.Igusa, J.-I.: Arithmetic variety of moduli for genus \(2\) . Ann. Math. 72, 612–649 (1960)MATH MathSciNet CrossRef
    21.Jones, B.: The Arithmetic Theory of Quadratic Forms. Carus Monographs No. 10, MAA (1967)
    22.Kani, E.: Elliptic curves on abelian surfaces. Manus. math. 84, 199–223 (1994)MATH MathSciNet CrossRef
    23.Kani, E.: The number of curves with elliptic differentials. J. Reine Angew. Math. 485, 93–121 (1997)MATH MathSciNet
    24.Kani, E.: Idoneal numbers and some generalizations. Ann. Sci. Math. Québec 35, 197–227 (2011)MATH MathSciNet
    25.Kani, E.: Generalized Humbert Varieties and intersections of Humbert surfaces. In preparation
    26.Katz, N., Mazur, B.: Arithmetic Moduli of Elliptic Curves. Princeton University Press, Princeton (1985)MATH
    27.Krazer, A.: Lehrbuch der Thetafunktionen. Leipzig, 1903; Chelsea Reprint, New York (1970)
    28.Lang, S.: Elliptic Functions. Addison-Wesley, Reading (1972)
    29.Lange, H.: Produkte elliptischer Kurven. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (8), 95–108 (1975)
    30.Lange, H.: Principal polarizations on products of elliptic curves. In: The Geometry of Riemann Surfaces and Abelian Varieties. Contemp. Math., vol. 397. AMS, Providence, pp. 153–162 (2006)
    31.Mazur, B.: Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. 47, 33–186 (1977)MATH MathSciNet CrossRef
    32.McMullen, C.: Teichmüller curves in genus 2: discriminant and spin. Math. Ann. 333, 87–130 (2005)MATH MathSciNet CrossRef
    33.McMullen, C.: Dynamics of SL\(_2(\mathbb{R})\) over moduli space in genus two. Ann. Math. 165, 397–456 (2007)MATH MathSciNet CrossRef
    34.Milne, J.S.: Abelian varieties. In: Cornell, G., Silverman, J. (eds.) Arithmetic Geometry, pp. 103–150. Springer, New York (1986)CrossRef
    35.Milne, J.S.: Jacobian varieties. In: Cornell, G., Silverman, J. (eds.) Arithmetic Geometry, pp. 165–212. Springer, New York (1986)
    36.Mumford, D.: Geometric Invariant Theory. Springer, Berlin (1965)MATH CrossRef
    37.Mumford, D.: Abelian Varieties. Oxford University Press, Oxford (1970)MATH
    38.Oort, F., Steenbrink, J.: The local Torelli problem for algebraic curves. Journées de Géometrie Algébrique d’Angers, Juillet 1979, Algebraic Geometry, Angers, Sijthoff & Noordhoff. Alphen aan den Rijn-Germantown, Md. 1980; pp. 157–204 (1979)
    39.van der Geer, G.: Hilbert Modular Surfaces. Springer, Berlin (1988)MATH CrossRef
    40.Watson, G.L.: One-class genera of positive quadratic forms in seven variables. Proc. Lond. Math. Soc. (3) 48, 175–192 (1984)MATH CrossRef
    41.Weil, A.: Zum Beweis des Torellischen Satzes. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Klasse, = Œuvres II, pp. 307–327 (1957)
    42.Weil, A.: Number Theory: An Approach through History. From Hammurapi to Legendre. Birkhäuser, Boston (1983)
    43.Weinberger, P.: Exponents of class groups of complex quadratic fields. Acta Arith. 22, 117–124 (1973)MATH MathSciNet
  • 作者单位:Ernst Kani (1)

    1. Department of Mathematics and Statistics, Queen’s University, Kingston, K7L 3N6, ON, Canada
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Algebra
    Analysis
    Applications of Mathematics
    Geometry
  • 出版者:Springer Milan
  • ISSN:2038-4815
文摘
The purpose of this paper is to study the moduli spaces of curves C of genus 2 with the property that their Jacobians \(J_C\) are isomorphic to a product surface \(E_1\times E_2\). Theorem 1 shows that the set of such curves is the union of infinitely many closed subvarieties T(d), \(d\ge 3\), of the moduli space \(M_2\). Each T(d) is a curve except for finitely many d’s for which T(d) is empty. The precise list of the exceptional d’s is given in Theorem 5 and depends on the validity of a conjecture due to Euler and Gauss. Each T(d) is the union of finitely many irreducible components \(H'(q)\), where q runs over the equivalence classs of certain binary quadratic forms of discriminant \(-16d\); cf. Theorems 2 and 3. The birational structure of the curve \(H'(q)\) (which can be viewed a “generalized Humbert variety”) is determined in Theorem 4. It turns out that \(H'(q)\) is a quotient of the modular curve \(X_0(d)\) modulo certain Atkin–Lehner involutions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700