A 3D numerical study of LO2/GH2 supercritical combustion in the ONERA-Mascotte Test-rig configuration
详细信息    查看全文
  • 作者:Abdelkrim Benmansour ; Abdelkrim Liazid…
  • 关键词:Rocket engine ; non ; premixed combustion ; supercritical regime ; H2 ; O2 flame ; transport properties
  • 刊名:Journal of Thermal Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:25
  • 期:1
  • 页码:97-108
  • 全文大小:1,660 KB
  • 参考文献:[1]J. Haidn, M. Habiballah, Research on high pressure cryogenic combustion, Aerospace Science and Technology, vol. 7, pp. 473–491, 2003.CrossRef
    [2]F. Troadec. Simulation numérique directe d’un écoulement supercritique pour validation des approches RANS et LES. Doctorate thesis, Rouen University, 2010.
    [3]P. K. Tucker, S. Menon, C.L. Merkle, J.C. Oefelein, and V. Yang. An approach to improve credibility of CFD simulations for rocket injector design. 43rd AIAA/ASEE Joint propulsion conference and exhibit, Cincinnati, OH, USA, pp. 1–23, 2007.
    [4]T. Schmitt, L.C. Selle, B. Cuenot, and T. Poinsot. Largeeddy simulation of transcritical flows. C. R. Mecanique, 337: 528–538, 2009.ADS CrossRef
    [5]G. Lacaze and J. C. Oefelein. A non-premixed combustion model based on flame structure analysis at supercritical pressures. Combustion and Flame, 159: 2087–2103, 2012.CrossRef
    [6]J. Daou, P. Haldenwang, C. Nicoli, “Supercritical burning of liquid oxygen (LOX) droplet with detailed chemistry”, Combust. Flame. Vol. 101, pp.153–169, 1995.CrossRef
    [7]J. P. Delplanque, W. Sirignano, “Numerical study of transient vaporization of an oxygen droplet at sub and supercritical Conditions”, Int. J. Heat Mass Transfer, vol. 36, no. 2, pp.303–314, 1993.CrossRef MATH
    [8]R. S. Miller, G. Harstad, J. Bellan, “Evaluation of Equilibrium and Non equilibrium evaporation models for many droplet gas-liquid flow simulations”, Int. J. Multiphase Flow. vol. 24, no. 6, pp.1025–1055, 1998.CrossRef MATH
    [9]V. Yang, “Modeling of super critical vaporization, Mixing and combustion processes in liquid- fueled propulsion systems”, Proceedings of the Combustion Institute, Pittsburgh, Penn, USA. pp. 925–942, 2000.
    [10]S. Candel, G. Herding, R. Snyder, P. Scouflaire, J.C. Rolon, L. Vingert, M. Habiballah, F. Grisch, M. Pealat, P. Bouchardy et al. “Experimental investigation of shear coaxial cryogenic jet flames”, J. Propul. Power, pp. 826–834, 1998.
    [11]A. Haberzettl, D. Gundel, K. Bahlmann, P. Vuillermoz, “European research and technology test bench P8 for high pressure liquid rocket propellants”. Paris, France, 29 Nov- 01 Dec. 1999, 3rd European Conference on Space Transportation Systems.
    [12]M. Habiballah, L. Vingert, J.C. Traineau, P. Vuillermoz, “A MASCOTTE test bench for cryogenic combustion research”, In IAF, 47th International Astronautical Congress, Beijing, China, 1996.
    [13]M. Habiballah, L. Vingert, V. Duthoit and P. Vuillermoz, “Research as a key in the design methodology of liquid propellant combustion devices”, J. Prop. Power, vol. 14, no. 5, pp.782–788, 1998.
    [14]J. L.Thomas, S. Zurbach. Test case RCM3: Supercritical spray combustion at 60 bars at Mascotte; Proceedings, 2nd International Workshop on Rocket Combustion Modeling, Lampoldhausen, Germany, pp. 13–23, 2001.
    [15]L. Vingert, M. Habiballah, P. Gicquel, E. Brisson, S. Candel, G. Herding, R. Snyder, P. Scouflaire, C. Rolon, D. Stepowskiet et al., “Optical diagnostics for cryogenic liquid propellants combustion”, In AGARD conference proceedings, Advanced non-intrusive instrumentation for propulsion engines: Propulsion and energetics panel, Symposium n° 90, Brussels, Belgium, pp.44–1, 1998.
    [16]L. Vingert, M. Habiballah, J.C. Traineau, Mascotte, “A research test facility for high pressure combustion of cryogenic propellants”. In AAAF/CEAS, European Aerospace Conference, Paris, France, Nov. 29-Dec. 1, 1999, ONERA, TP, numéro 2000-15, 2000.
    [17]L. Vingert, M. Habiballah and P. Vuillermoz. Upgrading of the Mascotte cryogenic test bench to the LOX/Methane combustion studies. In 4th International Conference on Launcher Technology “Space Launcher Liquid Propulsion”, Liège, Belgium, 2002.
    [18]N. Zong, H. Meng, Shih-Yang Hsieh and V. Yang. “A numerical study of cryogenic fluid injection and mixing under supercritical conditions”. Physics of Fluids, 16, 4248–4261, 2004.ADS CrossRef
    [19]N. Zong and V. Yang. “Cryogenic fluid jets and mixing layers in transcritical and supercritical environments”. Combust. Sci. Tech., 178, pp.193–227, 2006.ADS CrossRef
    [20]T. Schmitt, L. Selle, A. Ruiz and B. Cuenot. “Large-Eddy Simulation of Supercritical-Pressure Round Jets”. AIAA Journal, Vol. 48, n° 9, pp.2133–2144, 2010.ADS CrossRef
    [21]J.C. Oefelein and V. Yang. “Modeling High-Pressure Mixing and Combustion Processes in Liquid Rocket Engines”. J. Prop. Power, 14, 5, 1998.CrossRef
    [22]M. Juniper and S. Candel. “Edge diffusion flame stabilization behind a step over a liquid reactant”. Journal of propulsion and power, vol. 19, no. 3, pp.332–341, 2003.MathSciNet CrossRef
    [23]G. Singla, P. Scouflaire, J C. Rolon and S. Candel. “Flame stabilization in high pressure LOx/GH2 and GCH4 combustion”. Proceedings of the Combustion Institute, Vol. 31, no. 2, pp.2215–2222, 2007.CrossRef
    [24]M. Juniper, N. Darabiha and S. Candel. “The extinction limits of a hydrogen counterflow diffusion flame above liquid oxygen”. Combust. Flame, Vol. 135, no. 1–2, pp.87–96, 2003.CrossRef
    [25]L. Pons, N. Darabiha and S. Candel. “Pressure effects on non premixed strained flames”. Combust. Flame, vol. 152, n° 1–2, pp.218–229, 2008.CrossRef
    [26]G. Ribert, N. Zong, V. Yang, L. Pons, N. Darabiha and S. Candel. “Counterflow diffusion flames of general fluids: Oxygen/hydrogen mixtures”, Combustion and Flame, Vol. 154, n°3, pp.319–330, 2008.CrossRef
    [27]V. Giovangigli, L. Matuszewski and F. Dupoirieux. “Detailed modeling of planar transcritical H2-O2-N2 flames”. Combustion Theory and Modelling, vol. 15, n°2, 141–182, 2011.ADS CrossRef MATH
    [28]M. Poschner, M. Pfitzner, Real gas CFD simulation of supercritical H2-LOX combustion in the Mascotte Single-Injector Combustor using a commercial CFD code, 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, paper 2008-952, 2008.
    [29]A. Minotti, C. Bruno, “Comparison between real and ideal sub and supercritical combustion simulations of Lo2-Ch4 LRE Flames at 15 MPa”, 46th AIAA Aero space Science and Meeting, Reno, NV, USA, 2008.
    [30]X. Petit, G. Ribert, G. Lartigue, P. Domingo: Large-eddy simulation of supercritical fluid injection. Journal of Supercritical Fluids. 84: 61–73. 2013.CrossRef
    [31]S. Matsuyama, J. Shinjo, Y. Mizobuchi and S. Ogawa. A Numerical Investigation on Shear Coaxial LOx/GH2 Jet Flame at Supercritical Pressure. In 44th AIAA Aerospace Sciences Meeeting and Exhibit, Reno, Nevada, 761, 2006CrossRef
    [32]S. Matsuyama, J. Shinjo, S. Ogawa and Y. Mizobuchi. Large Eddy Simulation of LOX/GH2 Shear-Coaxial Jet Flame at Supercritical Pressure. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 208, 2010.CrossRef
    [33]J. C. Oefelein. Large Eddy Simulation of Complex Thermophysics in Advanced Propulsion and Power Systems. 8th US National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19–22, 2013. Sandia National Laboratories, Livermore, CA 94551-0969.
    [34]J.C. Oefelein, G. Lacaze, R. Dahms, A. Ruiz, et al., Effects of Real-Fluid Thermodynamics on High-Pressure Fuel Injection Processes. SAE Int. J. Engines 7(3): 1125–1136, 2014.CrossRef
    [35]A. Benarous, A. Liazid. H2-O2 Supercritical combustion modeling using a CFD code, Thermal Science C vol. 13, n°3, pp.139–152, 2009. DOI:10.​2298/​TSCI0903139B CrossRef
    [36]M. Masquelet, S. Menon, Y. Jin and R. Friedrich. Simulation of unsteady combustion in a LOX-GH2 fueled rocket engine. Aerospace Science and Technology, 2009.
    [37]T. Schmitt, Y. Méry, M. Boileau and S. Candel. Large-Eddy Simulation of oxygen/methane flames under transcritical conditions. Proceedings of the Combustion Institute, 2010.
    [38]J. Bellan. Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays. Progress in energy and combustion science, 2000.
    [39]J. Bellan. Theory, modeling and analysis of turbulent supercritical mixing. Combust. Sci. Tech, vol. 178, pp. 253–281, 2006.CrossRef
    [40]J. Bellan, N. Okong’o, and K.G. Harstad. Direct numerical simulations of O2/H2 temporal mixing layers under supercritical condition. AIAA Journal, 40:914–926, 2002.ADS CrossRef
    [41]M. Pourouchottamane, V. Burnley, F. Dupoirieux, M. Habiballah, L. Vingert, “Numerical analysis of the 10 bar MASCOTTE flow field”, Heilbronn, Germany, 26–27 March 2001. 2nd International Workshop on Rocket Combustion Modeling.
    [42]M. Mayer, H. Tamura. Propellant injection in a liquid oxygen/gaseous hydrogen rocket engine; Journal of Propulsion and Power, vol.12 No. 6, pp. 1137–1147, 1996.CrossRef
    [43]J. C. Oefelein. Mixing and Combustion of Cryogenic Oxygen-Hydrogen Shear Coaxial Jet Flames at Supercritical Pressure, Combustion Science and Technology, Vol. 178, No. 1–3, pp. 229–252, 2006.CrossRef
    [44]X. Petit, G. Ribert, P. Domingo. Framework for real-gas compressible reacting flows with tabulated thermochemistry. Journal of Supercritical Fluids. DOI:10.​1016/​j.​supflu.​2015.​02.​017
    [45]R. N. Dahms, J. C. Oefelein. Theory and Analysis of Liquid-Oxygen—Hydrogen Interface Dynamics in Liquid Rockets at Supercritical Pressures. Sandia National Laboratories; Livermore CA 94551, USA.
    [46]G. Soave, “Equilibrium constants from a modified Redlich- Kwong equation of state”. Chem. Eng. Sci. vol. 27, n°6, pp. 1197–1203, 1972.CrossRef
    [47]D.Y. Peng, D. B. Robinson, “A new two-constant equation of state”. Ind. Eng. Chem. Fundam. vol. 15, 59–64, 1976.CrossRef MATH
    [48]M. Benedict, G.B. Webb, L.C. Rubin, “An Empirical equation for thermodynamic properties of light hydrocarbons and their mixtures II. Mixtures of Methane, Ethane, Propane, and n-Butane”. J. Chem. Phys. 10 747, 1942.ADS CrossRef
    [49]E.W. Lemmon, M.O. Mc Linden, D.G. Friend, “Thermophysical Properties of Fluid Systems”. NIST Chemistry WebBook, National Institute of Standards and Technology, (http://​webbook.​nist.​gov).
    [50]S. Candel, M. Juniper, G. Singla, P. Scouflaire, C. Rolon, “Structure and dynamics of cryogenic flames at supercritical pressure”. Combust. Sci. Technol. vol. 178, pp. 161–192, 2006.CrossRef
    [51]M. Habiballah, M. Orain, F. Grisch, L. Vingert, P. Gicquel, “Experimental studies of high-pressure cryogenic flames on the Mascotte facility”, Combust. Sci. and Tech, vol. 178, pp. 101–128, 2006.CrossRef
    [52]S. Gordon, B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions and applications”, NASA Reference Publication N°1311, Lewis Research Center, Cleveland, Ohio., USA, 1994.
    [53]N. Marinov, C. Westbrook, W. Pitz. Detailed and global chemical kinetics model for hydrogen. Transport Phenomena in Combustion, 1, 92, 1996.
    [54]C.R. Rogers, W. Chinitz. On the use of a global hydrogen- air combustion model in the calculation of turbulent reacting flows. 20th Aerospace Sciences Meeting and Exhibit; AIAA 1982-0112, Orlando, FL, January 1982.CrossRef
    [55]R.J. Kee, F. M. Rupley, J. A.Miller. Chemkin-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, Sandia National Laboratories Report No. SAND 89-8009, 1989.
    [56]P. Gicquel, L. Vengert, Flow investigation of cryogenic spray in combustion at sub and supercritical condition, Illas-Europe, 2000.
  • 作者单位:Abdelkrim Benmansour (1)
    Abdelkrim Liazid (1)
    Pierre-Olivier Logerais (2)
    Jean-Félix Durastanti (2)

    1. Laboratory LTE, ENP-Oran, BP 1523, El Mnaouer Oran, 31000, Algeria
    2. Université de Paris-Est, CERTES, IUT de Sénart, rue Georges Charpak, 77567, Lieusaint, France
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics, Fluids and Thermodynamics
    Engineering Fluid Dynamics
    Engineering Thermodynamics and Transport Phenomena
    Chinese Library of Science
  • 出版者:Science Press, co-published with Springer-Verlag GmbH
  • ISSN:1993-033X
文摘
Cryogenic propellants LOx/H2 are used at very high pressure in rocket engine combustion. The description of the combustion process in such application is very complex due essentially to the supercritical regime. Ideal gas law becomes invalid. In order to try to capture the average characteristics of this combustion process, numerical computations are performed using a model based on a one-phase multi-component approach. Such work requires fluid properties and a correct definition of the mixture behavior generally described by cubic equations of state with appropriated thermodynamic relations validated against the NIST data. In this study we consider an alternative way to get the effect of real gas by testing the volume-weighted-mixing-law with association of the component transport properties using directly the NIST library data fitting including the supercritical regime range. The numerical simulations are carried out using 3D RANS approach associated with two tested turbulence models, the standard k-Epsilon model and the realizable k-Epsilon one. The combustion model is also associated with two chemical reaction mechanisms. The first one is a one-step generic chemical reaction and the second one is a two-step chemical reaction. The obtained results like temperature profiles, recirculation zones, visible flame lengths and distributions of OH species are discussed. Keywords Rocket engine non-premixed combustion supercritical regime H2-O2 flame transport properties

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700