Geochemistry and provenance of bed sediments of the large rivers in the Tibetan Plateau and Himalayan region
详细信息    查看全文
  • 作者:Weihua Wu (12) wuwh@nju.edu.cn
    Hongbo Zheng (1)
    Shijun Xu (3)
    Jiedong Yang (4)
    Hongwei Yin (3)
  • 关键词:The Tibetan Plateau &#8211 ; Riverbed sediments &#8211 ; Major and trace elements &#8211 ; Sr&#8211 ; Nd isotopes &#8211 ; Chemical weathering
  • 刊名:International Journal of Earth Sciences
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:101
  • 期:5
  • 页码:1357-1370
  • 全文大小:649.8 KB
  • 参考文献:1. Ahmad T, Khanna PP, Chakrapani CJ, Balakrishnan S (1998) Geochemical characteristics of water and sediment of the Indus river, Trans–Himalaya, India: constraints on weathering and erosion. J Asian Earth Sci 16:333–346
    2. Alizai A, Carter A, Clift PD, VanLaningham S (2011) Sediment provenance, reworking and transport processes in the Indus river by U-Pb dating of detrital zircon grains. Global Planet Change 76:33–55
    3. Bai YS, Li L, Niu ZJ, Yao HZ, Duan QF (2006) Isotope geochronology and geochemical characteristics of Geladandong monzonitic granite in central Qiangtang. Acta Geoscientica Sinica 27(3):217–225 (in Chinese with an English abstract)
    4. Berner EK, Berner RA (1987) The global water cycle geochemistry and environment. Prentice-Hall, Englewood Cliffs
    5. Borges J, Huh Y, Moon S, Noh H (2008) Provenance and weathering control on river bed sediments of the eastern Tibetan Plateau and the Russian Far East. Chem Geol 254:52–72
    6. Burbank DW, Blythe AE, Putkonen J, Pratt–Sitaula B, Gabet E, Oskin M, Barros A, Ojha TP (2003) Decoupling of erosion and precipitation in the Himalayas. Nature 426:652–655
    7. Chappell J, Zheng HB, Fifield K (2006) Yangtse river sediments and erosion rates from source to sink traced with cosmogenic 10Be: sediments from major rivers. Palaeogeogra Palaeoclim Palaeoecol 241:79–94
    8. Chen JS, Wang FY, Xia XH, Zhang LT (2002) Major element chemistry of the Changjiang (Yangtze River). Chem Geol 187:231–255
    9. Chen J, Li GJ, Yang JD, Rao WB, Lu HY, Balsam W, Sun YB, Ji JF (2007a) Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust. Geochimi Cosmochimi Acta 71:3904–3914
    10. Chen JL, Xu JF, Kang ZQ, Wang BD (2007b) Geochemistry and origin of Miocene volcanic rocks in Caze area, southwestern Qinghai-Xizang Plateau. Geochimica 36(5):437–447 (In Chinese with an English abstract)
    11. Chesley JT, Quade J, Ruiz J (2000) The Os and Sr isotopic record of Himalayan paleorivers: himalayan tectonics and influence on ocean chemistry. Earth Planet Sci Lett 179:115–124
    12. CIGMR (Chengdu Institute of Geology and Mineral Resources, China Geological Survey) (2004) The 1: 1 500 000 geological map of the Tibetan Plateau and vicinity. Chengdu Map Publishing House, Chengdu (in Chinese)
    13. Clift PD, Blusztajn J (2005) Reorganization of the western Himalayan river system after five million years ago. Nature 438:1001–1003
    14. Clift PD, Lee J, Hildebrand P, Shimizu N, Layne GD, Blusztajn J, Blum JD, Garzanti E, Khan AA (2002) Nd and Pb isotope variability in the Indus river system: implications for sediment provenance and crustal heterogeneity in the Western Himalaya. Earth Planet Sci Lett 200:91–106
    15. Condie KC, Wronkiewicz DS (1990) The Ce/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of cratanic evolution. Earth Planet Sci Lett 97:256–267
    16. Dalai TK, Rengarajan R, Patel PP (2004) Sediment geochemistry of the Yamuna River system in the Himalaya: implications to weathering and transport. J Geochem 38:441–453
    17. Dekov VM, Ara煤jo F, Van Grieken R, Subramanian V (1998) Chemical composition of sediments and suspended matter from the Cauvery and Brahmaputra rivers (India). Sci Total Environ 212:89–105
    18. Ding ZL, Sun JM, Yang SL, Liu TS (2001) Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change. Geochimi Cosmochimi Acta 65:901–913
    19. Duan ZM, Li Y, Zhang Y, Li YL, Wang M (2005) Zircon U–Pb age, continent dynamics significance and geochemical characteristics of the Mesozoic and Cenozoic granites from the Tanggula Range in the Qinghai–Tibet Plateau. Acta Geol Sinica 79(1):88–97 (In Chinese with an English abstract)
    20. Fleet AR (1984) Aqueous and sedimentary geochemistry of the rare earth elements. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 331–373
    21. Gaillardet J, Dupr茅 B, All猫gre CJ (1999) Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochimi Cosmochimi Acta 63:4037–4051
    22. Galy A, France–Lanord C (2001) Higher erosion rates in the Himalaya: geochemical constraints on riverine flux. Geology 29:23–26
    23. Galy V, France-Lanord C, Peucker-Ehrenbrink B, Huyghe P (2010) Sr-Nd-Os evidence for a stable erosion regime in the Himalaya during the past 12 Myr. Earth Planet Sci Lett 290:474–480
    24. Gao YF, Hou ZQ, Ment XJ, Hu HB (2006) The geochemistry and Sr-Nd-Pb isotopes of basaltic subvolcanics from the Gangdese: constraints on depleted mantle source for post-collisional volcanisms in the Tibetan Plateau. Acta Petrologica Sinica 22(3):547–557 (In Chinese with English abstract)
    25. Gao YF, Hou ZQ, Kamber BS, Wei RH, Meng XJ, Zhao RS (2007) Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism. Contrib Mineral Petrol 153:105–120
    26. Gao YF, Wei RH, Ma PX, Hou ZQ, Yang ZS (2009) Post-collisional ultrapotassic volcanism in the Tangra Yumco-Xuruco graben, south Tibet: constraints from geochemistry and Sr–Nd–Pb isotope. Lithos 110:129–139
    27. Garzanti E, Vezzoli G, And貌 S, France-Lanord C, Singh SK, Foster G (2004) Sand petrology and focused erosion in collision orogens: the Brahmaputra case. Earth Planet Sci Lett 220:157–174
    28. Garzanti E, Vezzoli G, And貌 S, Paparella P, Clift PD (2005) Petrology of Indus River sands: a key to interpret erosion history of the Western Himalayan syntaxis. Earth Planet Sci Lett 229:287–302
    29. Garzanti E, And貌 S, France-Lanord C, Vezzoli G, Censi P, Galy V, Najman Y (2010) Mineralogical and chemical variability of fluvial sediments 1. Bedload sand (Ganga-Brahmaputra, Bangladesh). Earth Planet Sci Lett 299:368–381
    30. Geng QR, Wang LQ, Pan GT, Jin ZM, Zhu DC, Liao ZL, Li GM, Li FQ (2007) Volcanic rock geochemistry and tectonic implication of the Luobadui formation on the Gangdese zone, Xizang (Tibet). Acta Petrol Sinica 23(11):2699–2714 (in Chinese with English abstract)
    31. Goldstein SL, Jacobsen SB (1988) Nd and Sr isotopic systematics of river suspended material: implications for crustal evolution. Earth Planet Sci Lett 87:249–265
    32. Goldstein SL, O’Nions RK, Hamilton PJ (1984) A Sm–Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet Sci Lett 70:221–236
    33. Guo ZF, Wilson M, Liu JQ (2007) Post-collisional adakites in south Tibet: products of partial melting of subduction-modified lower crust. Lithos 96:205–224
    34. Hay WW (1998) Detrital sediment fluxes from continents to oceans. Chem Geol 145:287–323
    35. He LB, Liu QY (1997) Geochemical characteristics of clay minerals in sediments of the Yellow and Yangtze River. Chinese Sci Bull 42(7):730–734 (in Chinese)
    36. He ZH, Yang DM, Zheng CQ, Wang TW (2006) Isotopic dating of the Mamba granitoid in the Gangdise tectonic belt and its constraint on the subduction time of the Neotethys. Geol Rev 52(1):100–106 (In Chinese with English abstract)
    37. Herron MM (1988) Geochemical classification of terrigenous sands and shales from core or log data. J Sediment Petrol 58:820–829
    38. Hoang LV, Clift PD, Mark D, Zheng HB, Tan MT (2010) Ar–Ar muscovite dating as a constraint on sediment provenance and erosion processes in the Red and Yangtze River systems, SE Asia. Earth Planet Sci Lett 295:379–389
    39. Hodell DA, Mead GA, Mueller PA (1990) Variation in the strontium isotopic composition of seawater (8 Ma to present) implications for chemical weathering rates and dissolved fluxes to the oceans. Chem Geol 80:291–307
    40. Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX (2004) Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci Lett 220:139–155
    41. Hu MH, Stallard RF, Edmond JM (1982) Major ion chemistry of some large Chinese rivers. Nature 298:550–553
    42. Huang GC, Li ZC, Qiu RZ, Cai ZY (2004) Geologic and geochemical characteristics of volcanic rocks in Shiduo, western Gangdise, Tibet. Geoscience 18(4):511–517 (In Chinese with an English abstract)
    43. Huang X, Sillanp盲盲 M, Gjessing ET, Vogt RD (2009) Water quality in the Tibetan Plateau: major ions and trace elements in the headwaters of four major Asian rivers. Sci Total Environ 407:6242–6254
    44. Jiang W, Mo XX, Zhao CH, Guo TY, Zhang SQ (1999) Geochemistry of granitoid and its mafic microgranular enclave in Gangdise belt, Qinghai-Xizang Plateau. Acta Petrol Sinica 15(1):89–97 (In Chinese with English abstract)
    45. Kim GB, Yang HS, Church TM (1999) Geochemistry of alkaline earth elements (Mg, Ca, Sr, Ba) in the surface sediments of the Yellow Sea. Chem Geol 153:1–10
    46. Kong H, Duan JR, He SX (1999) Study of primary geocheical characteristics of the Jinshajiang metamorphic complex in Dongchuan Yunnan. J Guilin Inst Technol 19:28–33 (In Chinese with an English abstract)
    47. Lee J, Clift PD, Layne G, Blum J, Khan AA (2003) Sediment flux in the modern Indus River inferred from the trace element composition of detrital amphibole grains. Sediment Geol 160:243–257
    48. Lee HY, Chung SL, Lo CH, Ji JQ, Lee TY, Qian Q, Zhang Q (2009) Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics 477:20–35
    49. Li CL, Kang SC, Zhang QG, Wang FY (2009) Rare earth elements in the surface sediments of the Yarlung Tsangbu (Upper Brahmaputra River) sediments, southern Tibetan Plateau. Quatern Int 208:151–157
    50. Lu CX, Wang L, Xie GD, Leng YF (2006) Altitude effect of precipitation and spatial distribution of Qinghai–Tibetan Plateau. J Mountain Sci 25:655–663 (In Chinese with an English abstract)
    51. Ludwig W, Probst JL (1998) River sediment discharge to the oceans: present-day controls and global budgets. J Am Sci 298:265–295
    52. McLennan SM (1989) Rare elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds). Geochemistry and mineralogy of rare earth elements. Rev Mineral 21:169–200
    53. McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson MJ, Basu A (eds) Processes controlling the composition of clastic sediments. GSA Special Paper 284:21–40
    54. Milliman JD, Meade RH (1983) World–wide delivery of river sediment to the oceans. J Geol 91:1–21
    55. Mo XX, Deng JF, Dong FL, Yu XH, Wang Y, Zhou S, Yang WG (2001) Volcanic petrotectonic assemblages in Sanjiang orogenic belt, SW China and implication for tectonics. Geol J China Univ 7(2):121–138 (In Chinese with an English abstract)
    56. Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S, Ke S (2008) Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chem Geol 250:49–67
    57. Mukherjee PK, Purohit KK, Saini NK, Khanna PP, Rathi MS, Grosz AE (2007) A stream sediment geochemical survey of the Ganga River headwaters in the Garhwal Himalaya. J Geochem 41:83–95
    58. Najman Y (2006) The detrital record of orogenesis: a review of approaches and techniques used in the Himalayan sedimentary basins. Earth Sci Rev 74:1–72
    59. Nesbitt HW (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279:206–210
    60. Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717
    61. Neubert N, Heri AR, Voegelin AR, N盲gler TF, Schlunegger F, Villa IM (2011) The molybdenum isotopic composition in river water: constraints from small catchments. Earth Planet Sci Lett 304:180–190
    62. Padoan M, Garzanti E, Harlavan Y, Villa IM (2011) Tracing Nile sediment sources by Sr and Nd isotope signatures (Uganda, Ethiopia, Sudan). Geochimi Cosmochimi Acta 75:3627–3644
    63. Potter PE (1978) Petrology and chemistry of modern big river sands. J Geol 86:423–449
    64. Qiu RZ, Deng JF, Zhou S, Xiao QH, Cai ZY, Liu C (2003) Sr–Nd isotope studies of Mesozoic–Cenozoic granites in Qinghai–Tibetan Plateau. Acta Geoscientica Sinica 24:611–617 (In Chinese with English abstract)
    65. Qiu RZ, Deng JF, Zhou S, Li TD, Xiao QH, Guo TY, Cai ZY, Li GL, Huang GC, Meng XJ (2005) Ophiolite types in western Qinghai–Tibetan Plateau–Evidences from petrology and geochemistry. Earth Sci Frontiers 12(2):277–291 (In Chinese with English abstract)
    66. Rahaman W, Singh SK, Sinha R, Tandon SK (2009) Climate control on erosion distribution over the Himalaya during the past 100 ka. Geology 37:559–562
    67. Raymo ME, Ruddiman WF (1992) Tectonic forcing of late Cenozoic climate. Nature 359:117–122
    68. Ren ME, Shi YL (1986) Sediment discharge of the Yellow River and its effect on sedimentation of the Bohai and Yellow Sea. Scientia Geographica Sinica 1, (In Chinese)
    69. Revel M, Cremer M, Grousset FE, Labeyrie L (1996) Grain size and Sr–Nd isotopes as tracer of paleo–bottom current strength, Northeast Atlantic Ocean. Mar Geol 131:233–249
    70. Richter FM, Rowley DB, DePaolo DJ (1992) Sr isotope evolution of seawater: the role of tectonics. Earth Planet Sci Lett 109:11–23
    71. Roddaz M, Viers J, Brusset S, Bady P, Boucayrand C, H茅rail G (2006) Controls on weathering and provenance in the Amazonian foreland basin, Insights from major and trace element geochemistry of Neogene Amazonian sediments. Chem Geol 226:31–65
    72. Sharma M, Wasserburg GL, Hofmann AW, Chakrapani GJ (1999) Himalayan uplift and osmium isotopes in oceans and rivers. Geochimi Cosmochimi Acta 63:4005–4012
    73. Singh P (2010) Geochemistry and provenance of stream sediments of the Ganga River and its major tributaries in the Himalayan region, India. Chem Geol 269:220–236
    74. Singh SK, France–Lanord C (2002) Tracing the distribution of erosion in the Brahmaputra watershed from isotopic compositions of stream sediments. Earth Planet Sci Lett 202:645–662
    75. Singh SK, Rai SK, Krishnaswami S (2008) Sr and Nd isotopes in river sediments from the Ganga Basin: sediment provenance and spatial variability in physical erosion. J Geophys Res 113:F03006. doi:
    76. Song XY, Qi HW, Robinson PT, Zhou MF, Cao ZM, Chen LM (2008) Melting of the subcontinental lithospheric mantle by the Emeishan mantle plume; evidence from the basal alkaline basalts in Dongchuan, Yunnan, Southwestern China. Lithos 100:93–111
    77. Stallard RF, Edmond JM (1983) Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J Geophys Res 88:9671–9688
    78. Stewart RJ, Zeitler PK, Malloy MA, Allen CM, Trippett D (2008) Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya. Geology 36:711–714
    79. Sun CG, Zhao ZD, Zhu DC, Dong GC, Zhou S, Dong X, Xie GG (2007) Geochemistry and origin of the Miocene Sailipu ultrapotassic rocks in western Lhasa block, Tibetan Plateau. Acta Petrologica Sinica 23(11):2715–2726 (In Chinese with English abstract)
    80. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford
    81. Tipper ET, Galy A, Gaillardet J, Bickle MJ, Elderfield H, Carder EA (2006) The magnesium isotope budget of the modern ocean: constraints from riverine magnesium isotope ratio. Earth Planet Sci Lett 250:241–253
    82. Vance D, Bickle M, Ivy–Ochs S, Kubik PW (2003) Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments. Earth Planet Sci Lett 206:273–288
    83. Vital H, Stattegger K (2000) Major and trace elements of stream sediments from the lowermost Amazon River. Chem Geol 168:151–168
    84. Wen QZ (1989) Geochemistry of loess in China. Science Publishing House, Beijing
    85. Wen DR, Chung SL, Song B, Iizuka Y, Yang HJ, Ji JQ, Liu DY, Gallet S (2008) Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: petrogenesis and tectonic implications. Lithos 105:1–11
    86. Wu WH, Yang JD, Xu SJ, Yin HW (2008) Geochemistry of the headwaters of the Yangtze River, Tongtian He and Jinsha Jiang: silicate weathering and CO2 consumption. Appl Geochem 23:3712–3727
    87. Xiao L, Xu YG, Mei HJ, Zheng YF, He B, Pirajno F (2004) Distinct mantle sources of low–Ti and high–Ti basalts from the western Emeishan large igneous province, SW China: implications for plume–lithosphere interaction. Earth Planet Sci Lett 228:525–546
    88. Xie J, Zhu BQ, Chang XY (2005) Geochemical characteristics of basic-intermediate vlocanic rocks from Jinshajiang belt in northwestern Yunnan, China. Bull Mineral Petrol Geochem 24(4):299–308 (in Chinese with English abstract)
    89. Xu YG, Chung SL, Jahn BM, Wu GY (2001) Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China. Lithos 58:145–168
    90. Xu JF, Suzuki K, Xu YG, Mei HJ, Li J (2007) Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts: Insights into the source of a large igneous province. Geochimi Cosmochimi Acta 71:2104–2119
    91. Yang SY, Li CX (1999) Characteristic element compositions of the Yangtze and the Yellow River sediments and their geological background. Mar Gelo Quatern Geol 19(2):19–26 (in Chinese with an English abstract)
    92. Yang SY, Jung HS, Choi MS, Li CX (2002a) The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments. Earth Planet Sci Lett 201:407–419
    93. Yang SY, Li CX, Jung HS, Lee HJ (2002b) Discrimination of geochemical compositions between the Changjiang and the Huanghe sediments and its application for the identification of sediment source in the Jiangsu coastal plain, China. Mar Geol 186:229–241
    94. Yang SY, Jung HS, Li CX (2004) Two unique weathering regimes in the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments. Sediment Geol 164:19–34
    95. Yang QJ, Huang XL, Luo ZY (2006) Geochronology and geochemistry of granites in the Gaoligong tectonic belt, western Yunnan: Tectonic implications. Acta Petrologica Sinica 22(4):817–834 (In Chinese with English abstract)
    96. Yang SY, Jiang SY, Ling HF, Xia XP, Sun M, Wang DJ (2007) Sr–Nd isotopic compositions of the Yangtze River sediments and provenance tracing. China Sci Ser D 37(5):682–690
    97. Yi HS, Lin JH, Zhao XX, Zhou KK, Li JP, Huang HG (2008) Geochemistry of rare earth elements and origin of positive europium anomaly in Miocene-Oligocene lacustrine carbonates from Tuotuohe basin of Tibetan Plateau. Acta Sediment Sinica 26(1):1–10 (in Chinese with English abstract)
    98. Yokoo Y, Nakano T, Nishikawa M, Quan Q (2007) Mineralogical variation of Sr–Nd isotopic and elemental compositions in loess and desert sand from the central Loess Plateau in China as a provenance tracer of wet and dry deposition in the northwestern Pacific. Chem Geol 204:45–62
    99. Zhang CS, Wang LJ, Zhang S, Li XH (1998) Geochemistry of rare earth elements in the mainstream of the Yangtze River, China. Appl Geochem 13:451–462
    100. Zhong DL et al (1998) Paleo-Tethys Orogen in the western Yunnan and Sichuan Province. The Science Publishing House, Beijing (in Chinese)
    101. Zhu DC, Mo XX, Wang LQ, Zhao ZD, Niu YL, Zhou CY, Yang YH (2009) Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Sci China Ser D-Earth Sci 52(9):1223–1239
  • 作者单位:1. Institute of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, 210093 Nanjing, Peoples Republic of China2. School of Geographic and Oceanographic Sciences, Nanjing University, 210093 Nanjing, Peoples Republic of China3. School of Earth Sciences and Engineering, Nanjing University, 210093 Nanjing, Peoples Republic of China4. Center of Modern Analysis, Nanjing University, 210093 Nanjing, Peoples Republic of China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geology
    Geophysics and Geodesy
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1437-3262
文摘
We investigated the geochemical characteristics of major, trace and rare earth elements and Sr–Nd isotope patterns of bed sediments from the headwaters and upper reaches of the six large rivers draining the Tibetan Plateau (the Jinsha River—Yangtze, Lancang River—Mekong, Nujiang River—Salween, Huang He—Yellow, Indus, and Yarlung Tsangpo—Brahmaputra). By using Ca/Al versus Mg/Al, La/Sc versus Co/Th, and 87Sr/86Sr versus εNd (0) binary differentiation diagrams of provenance, some typical contributors to the different catchment sediments can be identified. In the Three-River (the Jinsha, Lancang, and Nujiang Rivers) tectonomagmatic belt, acidic–intermediate-acidic volcanic rocks are very important provenance of sediments. Carbonate rocks and Permian Emeishan basalts are dominant in the Jinsha River. The Yellow River sediments have similar geochemical characteristics with loess in catchments. The Indus and Yarlung Tsangpo Rivers sediments are mainly from ultra-K volcanic rocks and Cenozoic granitoids widely distributed in the Indus–Yarlung suture. The intensity of chemical weathering in these river catchments is evaluated by calculating the chemical indices of alteration (CIA) of sediments and comparing them with bedrocks. The CIA values of the six river sediments are from 46.5 to 69.6, closing to those of bedrocks in the corresponding catchment, which indicates relatively weak chemical weathering intensity. Lithology, climate, and topography affect the chemical weathering intensity in these river catchments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700