Metal release from serpentine soils in Sri Lanka
详细信息    查看全文
  • 作者:Meththika Vithanage (1)
    Anushka Upamali Rajapaksha (1)
    Christopher Oze (2)
    Nishanta Rajakaruna (3)
    C. B. Dissanayake (1)
  • 关键词:Chemical extractions ; Natural attenuation ; Labile toxic metals ; Serpentine geoecology ; EPMA
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:186
  • 期:6
  • 页码:3415-3429
  • 全文大小:
  • 参考文献:1. Alexander, E. B. (2004). Serpentine soil redness, differences among peridotite and serpentinite materials, Klamath Mountains, California. / International Geology Review, 46(8), 754-64. CrossRef
    2. Alves, S., Trancoso, M. A., Gon?alves, M. d. L. S., & Correia dos Santos, M. M. (2011). A nickel availability study in serpentinised areas of Portugal. / Geoderma, 164(3-), 155-63.
    3. Amir, H., & Pineau, R. (2003). Release of Ni and Co by microbial activity in New Caledonian ultramafic soils. / Canadian Journal of Microbiology, 49(4), 288-93. CrossRef
    4. Armienta, M. A., Rodríguez, R., Ceniceros, N., Juárez, F., & Cruz, O. (1996). Distribution, origin and fate of chromium in soils in Guanajuato, Mexico. / Environmental Pollution, 91(3), 391-97. CrossRef
    5. Aydinalp, C., & Katkat, A. V. (2004). The comparison of extraction methods for evaluating some heavy metals in polluted soils. / Plant Soil Environment, 50(5), 212-17.
    6. Becquer, T., Quantin, C., Sicot, M., & Boudot, J. P. (2003). Chromium availability in ultramafic soils from New Caledonia. / Science of the Total Environment, 301(1-), 251-61. CrossRef
    7. Boyd, R. S., Kruckeberg, A. R., & Rajakaruna, N. (2009). Biology of ultramafic rocks and soils: research goals for the future. / Northeastern Naturalist, 16(5), 422-40. CrossRef
    8. Brooks, R. R. (1987). / Serpentine and its vegetation: a multidisciplinary approach. Portland: Dioscorides.
    9. Camachoa, J. R., & Armientac, M. A. (2000). Natural chromium contamination of groundwater at Leo’n Valley, Mexico. / Journal of Geochemical Exploration, 68, 167-81. CrossRef
    10. Castilho, P. D., & Rix, I. (1993). Ammonium acetate extraction for soil heavy metal speciation; model aided soil test interpretation. / International Journal of Environmental Analytical Chemistry, 51(1-), 59-4. CrossRef
    11. Cheng, C.- H., Jien, S.- H., Iizuka, Y., Tsai, H., Chang, Y.- H., & Hseu, Z.-Y. (2011). Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. / Soil Science Society of America Journal, 75(2), 659-68. CrossRef
    12. Coleman, R. G. (1977). / Ophiolites: ancient oceanic lithosphere? Berlin: Springer. CrossRef
    13. Coleman, R. G., & Jove, C. (1992). Geological origin of serpentinites. In: A. J. M. Baker, J. Proctor, & R. D. Reeves (Eds.), / The vegetation of ultramafic (serpentine) soils. Proceedings of the First International Conference on Serpentine Ecology (pp. 1-7). Hampshire: Intercept.
    14. Cooray, P. G. (1984). / An introduction to the geology of Sri Lanka (Ceylon). Colombo: National Museums of Sri Lanka.
    15. Dissanayaka, C. B. (1982). The geology and geochemistry of the Uda Walawe serpentinite. Sri Lanka. / Journal National Science Council Sri Lanka, 10, 13-4.
    16. Dissanayake, C. B., & Van Riel, B. J. (1978). The petrology and geochemistry of a recently discovered nickeliferous serpentinite from Sri Lanka. / Journal of the Geological Society of India, 19, 464-71.
    17. Echevarria, G., Massoura, S. T., Sterckeman, T., Becquer, T., Schwartz, C., & Morel, J. L. (2006). Assessment and control of the bioavailability of nickel in soils. / Environmental Toxicology and Chemistry, 25(3), 643-51. CrossRef
    18. Fendorf, S. E. (1995). Surface reactions of chromium in soils and waters. / Geoderma, 67(1-), 55-1. CrossRef
    19. Gasser, U. G., & Dahlgren, R. A. (1994). Solid-phase speciation and surface association of metals in serpentinitic soils. / Soil Science and Plant Nutrition, 158, 409-20.
    20. Gleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. / TrAC Trends in Analytical Chemistry, 21(6-), 451-67. CrossRef
    21. Gough, L. P., Meadows, G. R., Jackson, L. L., & Dudka, S. (1989). Biogeochemistry of highly serpentinized chromite rich ultramafic area, Tehma County, California. / USGS Bulletin, 1901.
    22. Gupta, S. K., & Aten, C. (1993). Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soils. / International Journal of Environmental Analytical Chemistry, 51(1-), 25-6. CrossRef
    23. Harris, T., & Rajakaruna, N. (2009). / Adiantum viridimontanum, / Aspidotis densa, / Minuartia marcescens, and / Symphyotrichum rhiannon: additional serpentine endemics from Eastern North America. / Northeastern Naturalist, 16(sp5), 111-20. CrossRef
    24. Harrison, S., & Kruckeberg, A. R. (2008). Garden on the rocks. / Natural History, 117, 40-4.
    25. Harrison, S., & Rajakaruna, N. (2011). / Serpentine: the evolution and ecology of a model system. Berkeley: University of California Press.
    26. Houba, V. J. G., Lexmond, T. M., Novozamsky, I., & Lee, J. J. (1996). State of the art and future developments in soil analysis for bioavailability assessment. / Science of the Total Environment, 178, 21-8. CrossRef
    27. Kabata-Pendias, A., & Pendias, H. (2001). / Trace elements in soils and plants (3rd ed.). Boca Raton: CRC.
    28. Kashem, M. A., Singh, B. R., Kondo, T., Imamul Huq, S. M., & Kawai, S. (2007). Comparison of extractability of Cd, Cu, Pb and Zn with sequential extraction in contaminated and non-contaminated soils. / International Journal Environmental Science Technology, 4(2), 169-76. CrossRef
    29. Kukier, U., Peters, C. A., Chaney, R. L., Angle, J. S., & Roseberg, R. J. (2004). The effect of pH on metal accumulation in two alyssum species. / Journal of Environmental Quality, 33(6), 2090-102. CrossRef
    30. Langmuir, D. (1997). / Aqueous environmental geochemistry. Englewood Cliffs: Prentice Hall.
    31. Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. / Soil Science Society of America Journal, 42(3), 421-28. CrossRef
    32. McGrath, S. P. (1995). Chromium and nickel. In B. J. Alloway (Ed.), / Heavy metals in soils (pp. 152-74). London: Blackie Academic and Professional. CrossRef
    33. Mogollón, J. L., Pérez-Diaz, A., & Lo Monaco, S. (2000). The effects of ion identity and ionic strength on the dissolution rate of a gibbsitic bauxite. / Geochimica et Cosmochimica Acta, 64(5), 781-95. CrossRef
    34. Morais, F. I., Page, A. L., & Lund, L. J. (1976). The effect of pH, salt concentration, and nature of electrolytes on the charge characteristics of Brazilian tropical soils. / Soil Science Society of America Journal, 40, 521-27. CrossRef
    35. Munasinghe, T., & Dissanayake, C. B. (1980). Is the Highland-eastern Vijayan boundary in Sri Lanka a possible mineralized belt? / Economic Geology, 75(5), 775-77. CrossRef
    36. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. / Nature, 403(6772), 853-58. CrossRef
    37. O’Hanley, D. S. (1996). / Serpentinites: records of tectonic and petrological history. Oxford monographs on geology and geophysics (34th ed.). New York: Oxford University Press.
    38. Oze, C. (2003). / Chromium geochemistry of serpentinites and serpentine soils. Stanford: Stanford University.
    39. Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004a). Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. / American Journal Science, 304, 67-01. CrossRef
    40. Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004b). Chromium geochemistry of serpentine soils. / International Geology Review, 46, 97-26. CrossRef
    41. Oze, C., Skinner, C., Schroth, A., & Coleman, R. G. (2008). Growing up green on serpentine soils: biogeochemistry of serpentine vegetation in the Central Coast Range of California. / Applied Geochemistry, 23, 3391-403. CrossRef
    42. Parks, G. A., & de Bruyn, P. L. (1961). The zero point of charge of oxides. / The Journal of Physical Chemistry, 66, 967-73. CrossRef
    43. Peijnenburg, W. J. G., Zablotskaja, M., & Vijver, M. G. (2007). Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. / Ecotoxicology and Environmental Safety, 67, 163-79. CrossRef
    44. Proctor, J., & Baker, A. J. M. (1994). The importance of nickel for plant growth in ultramafic (serpentine) soils. In S. M. Ross (Ed.), / Toxic metals in soil–plant systems (pp. 417-32). Chichester: Wiley.
    45. Rajakaruna, N., & Baker, J. M. (2004). Serpentine: a model habitat for botanical research in Sri Lanka. / Ceylon Journal of Science (Biological Sciences), 32, 1-9.
    46. Rajakaruna, N., & Bohm, B. A. (2002). Serpentine and its vegetation: a preliminary study from Sri Lanka. / Journal of Applied Botany, 76, 20-8.
    47. Rajakaruna, N., Harris, C. S., & Towers, G. H. N. (2002). Antimicrobial activity of plants collected from serpentine outcrops in Sri Lanka. / Pharmaceutical Biology, 40(3), 235-44. CrossRef
    48. Rajakaruna, N., Harris, T. B., & Alexander, E. B. (2009). Serpentine geoecology of Eastern North America: a review. / Rhodora, 111(945), 21-08. CrossRef
    49. Rajapaksha, A. U., Vithanage, M., Oze, C., Bandara, W. M. A. T., & Weerasooriya, R. (2012). Nickel and manganese release in serpentine soil from the Ussangoda ultramafic complex, Sri Lanka. / Geoderma, 189-90, 1-. CrossRef
    50. Ranasinghe, N. S. (1987). / Serpentinites associated with the precambrian of Sri Lanka. Geological Society of Sri Lanka special publication no. 3. Colombo: Geological Survey Department.
    51. Senevirathne, A. S., Nandadasa, H. G., Fernando, W. S., Sanjeevani, H. H. V. M., & Rajapakshe, R. L. H. R. (2000). The serpentine vegetation of Ussangoda (Hambantota District) and nickel accumulating plant species. Paper presented at the Proceedings of the Sixth Annual Forestry and Environmental Symposium, Kandy, Sri Lanka, 29-0 December.
    52. Stumm, W., & Morgan, J. J. (1996). / Aquatic chemistry. New York: Wiley Inter-Science.
    53. Sucik, G., Hrsak, D., Fedorockova, A., & Lazic, L. (2008). The preliminary characterization of serpentinite from Ljeskovac locality in Croatia. / Acta Metallurgica Slovaca, 14, 275-80.
    54. Sun, Y.-c., Chi, P.-h., & Shiue, M.-y. (2001). Comparison of different digestion methods for total decomposition of siliceous and organic environmental samples. / Analytical Sciences, 17(12), 1395-399. CrossRef
    55. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. / Analytical Chemistry, 51(7), 844-51. CrossRef
    56. Tye, A. M., Young, S., Crout, N. M. J., Zhang, H., Preston, S., Zhao, F. J., et al. (2004). Speciation and solubility of Cu, Ni and Pb in contaminated soils. / European Journal of Soil Science, 55(3), 579-90. CrossRef
    57. Van der Ent, A., Baker, A. M., Reeves, R., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. / Plant and Soil, 362(1-), 319-34. CrossRef
    58. Weerasinghe, H. A. S., & Iqbal, M. C. M. (2011). Plant diversity and soil characteristics of the Ussangoda serpentine site. / Journal National Science Foundation Sri Lanka, 39(4), 355-63. CrossRef
  • 作者单位:Meththika Vithanage (1)
    Anushka Upamali Rajapaksha (1)
    Christopher Oze (2)
    Nishanta Rajakaruna (3)
    C. B. Dissanayake (1)

    1. Chemical and Environmental Systems Modeling Research Group, Institute of Fundamental Studies, Kandy, Sri Lanka
    2. Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
    3. College of the Atlantic, 105 Eden Street, Bar Harbor, ME, 04609, USA
  • ISSN:1573-2959
文摘
Ultramafic rocks and their related soils (i.e., serpentine soils) are non-anthropogenic sources of metal contamination. Elevated concentrations of metals released from these soils into the surrounding areas and groundwater have ecological-, agricultural-, and human health-related consequences. Here we report the geochemistry of four different serpentine soil localities in Sri Lanka by coupling interpretations garnered from physicochemical properties and chemical extractions. Both Ni and Mn demonstrate appreciable release in water from the Ussangoda soils compared to the other three localities, with Ni and Mn metal release increasing with increasing ionic strengths at all sites. Sequential extraction experiments, utilized to identify “elemental pools,-indicate that Mn is mainly associated with oxides/(oxy)hydroxides, whereas Ni and Cr are bound in silicates and spinels. Nickel was the most bioavailable metal compared to Mn and Cr in all four soils, with the highest value observed in the Ussangoda soil at 168?±-.40?mg?kg? via the 0.01-M CaCl2 extraction. Although Mn is dominantly bound in oxides/(oxy)hydroxides, Mn is widely dispersed with concentrations reaching as high as 391?mg?kg? (Yudhaganawa) in the organic fraction and 49?mg?kg? (Ussangoda) in the exchangeable fraction. Despite Cr being primarily retained in the residual fraction, the second largest pool of Cr was in the organic matter fraction (693?mg?kg? in the Yudhaganawa soil). Overall, our results support that serpentine soils in Sri Lanka offer a highly labile source of metals to the critical zone.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700