Pleistocene climatic fluctuations explain the disjunct distribution and complex phylogeographic structure of the Southern Red-backed Salamander, Plethodon serratus
详细信息    查看全文
  • 作者:Benjamin D. Thesing ; Richard D. Noyes ; David E. Starkey…
  • 关键词:Allopatric speciation ; Biogeography ; Climate change ; Cryptic species ; Lineage diversification ; Ecological niche modeling
  • 刊名:Evolutionary Ecology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:30
  • 期:1
  • 页码:89-104
  • 全文大小:1,107 KB
  • 参考文献:Adams DC (2007) Organization of Plethodon salamander communities: guild-based community assembly. Ecology 88:1292–1299CrossRef PubMed
    Allen RT (1990) Insect endemism in the Interior Highlands of North America. Fla Entomol 73:539–569CrossRef
    Arévalo E, Davis SK, Sites JW Jr (1994) Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in Central Mexico. Syst Biol 43:387–418CrossRef
    Axelrod DI (1985) Rise of the grassland biome, central North America. Bot Rev 51:163–201CrossRef
    Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV (2012) Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol 29:2157–2167PubMedCentral CrossRef PubMed
    Baele G, Lok W, Li S, Drummond AJ, Suchard MA, Lemey P (2013) Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol Biol Evol 30:239–243PubMedCentral CrossRef PubMed
    Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222:1810–1819CrossRef
    Bayer CSO, Sackman AM, Bezold K, Cabe PR, Marsh DM (2012) Conservation genetics of an endemic mountaintop salamander with an extremely limited range. Conserv Genet 13:443–454CrossRef
    Bennett KD (1990) Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 16:11–21
    Bond JE, Stockman AK (2008) An integrative method for delimiting cohesion species: finding the population-species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring. Syst Biol 57:628–646CrossRef PubMed
    Brown JH, Stevens GC, Kaufman DM (1996) The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Syst 27:597–623CrossRef
    Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, ChicagoCrossRef
    Costa GC, Wolfe CA, Shepard DB, Caldwell JP, Vitt LJ (2008) Detecting the influence of climatic variables on species distributions: a test using GIS niche-based models along a steep longitudinal environmental gradient. J Biogeogr 35:637–646CrossRef
    Crandall KA, Templeton AR (1999) The zoogeography and centers of origin of the crayfish subgenus Procericambarus (Decapoda: Cambaridae). Evolution 53:123–134CrossRef
    Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295CrossRef PubMed
    Crawford JA, Peterman WE (2013) Biomass and habitat partitioning of Desmognathus on wet rock faces in southern Appalachian Mountains. J Herpetol 47:580–584CrossRef
    Davis MB (1983) Quaternary history of deciduous forests of eastern North America and Europe. Ann Mo Bot Gard 70:550–563CrossRef
    Dowling H (1956) Geographic relations of Ozarkian amphibians and reptiles. Southwest Nat 1:174–189CrossRef
    Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedCentral CrossRef PubMed
    Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:699–710CrossRef
    Edwards SV (2009) Is a new and general theory of molecular systematics emerging? Evolution 63:1–19CrossRef PubMed
    Edwards SV, Beerli P (2000) Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54:1839–1854PubMed
    Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697CrossRef
    Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57CrossRef
    Feder ME (1983) Integrating the ecology and physiology of plethodontid salamanders. Herpetologica 39:291–310
    Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752CrossRef PubMed
    Frost DR (2015) Amphibian Species of the World: an online reference. Version 6.0. American Museum of Natural History, New York. http://​research.​amnh.​org/​vz/​herpetology/​amphibia/​ . Accessed 8 July 2015
    Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford
    Grundstein A (2009) Evaluation of climate change over the continental United States using a moisture index. Clim Change 93:103–115CrossRef
    Hairston NG (1951) Interspecies competition and its probable influence upon the vertical distribution of Appalachian salamanders in the genus Plethodon. Ecology 32:266–274CrossRef
    Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276CrossRef
    Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913CrossRef PubMed
    Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc B 359:183–195CrossRef
    Highton R (1995) Speciation in eastern North-American salamanders of the genus Plethodon. Annu Rev Ecol Syst 26:579–600CrossRef
    Highton R, Webster TP (1976) Geographic protein variation and divergence in populations of the salamander Plethodon cinereus. Evolution 30:33–45CrossRef
    Highton R, Hastings AP, Palmer C, Watts R, Hass CA, Culver M, Arnold SJ (2012) Concurrent speciation in the eastern woodland salamanders (Genus Plethodon): DNA sequences of the complete albumin nuclear and partial mitochondrial 12s genes. Mol Phylogenet Evol 63:278–290CrossRef PubMed
    Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRef
    Jackson ST, Webb RS, Anderson KH, Overpeck JT, Webb T III, Williams JH, Hansen BCS (2000) Vegetation and environment in eastern North America during the last glacial maximum. Quat Sci Rev 19:489–508CrossRef
    Jaeger RG (1971) Competitive exclusion as a factor influencing the distributions of two species of terrestrial salamanders. Ecology 52:632–637CrossRef
    Jansson R, Dynesius M (2002) The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu Rev Ecol Syst 33:741–777CrossRef
    Jones MT, Voss SR, Ptacek MB, Weisrock DW, Tonkyn DW (2006) River drainages and phylogeography: an evolutionary significant lineage of shovel-nosed salamander (Desmognathus marmoratus) in the southern Appalachians. Mol Phylogenet Evol 38:280–287CrossRef PubMed
    Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795CrossRef
    Kohn MJ, Fremd TJ (2008) Miocene tectonics and climate forcing of biodiversity, western United States. Geology 36:783–786CrossRef
    Kozak KH, Wiens JJ (2006) Does niche conservatism promote speciation? A case study in North American salamanders. Evolution 60:2604–2621CrossRef PubMed
    Kozak KH, Wiens JJ (2010) Niche conservatism drives elevational diversity patterns in Appalachian salamanders. Am Nat 176:40–54CrossRef PubMed
    Kozak KH, Wiens JJ (2012) Phylogeny, ecology, and the origins of climate-richness relationships. Ecology 93:S167–S181CrossRef
    Kozak KH, Blaine RA, Larson A (2006a) Gene lineages and eastern North American paleodrainage basins: phylogeography and speciation in salamanders of the Eurycea bislineata species complex. Mol Ecol 15:191–207CrossRef PubMed
    Kozak KH, Weisrock DW, Larson A (2006b) Rapid lineage accumulation in a non-adaptive radiation: phylogenetic analysis of diversification rates in eastern North American woodland salamanders (Plethodontidae: Plethodon). Proc R Soc B 273:539–546PubMedCentral CrossRef PubMed
    Kozak KH, Graham CH, Wiens JJ (2008) Integrating GIS-based environmental data into evolutionary biology. Trends Ecol Evol 23:141–148CrossRef PubMed
    Kozak KH, Mendyk RW, Wiens JJ (2009) Can parallel diversification occur in sympatry? Repeated patterns of body-size evolution in coexisting clades of North American salamanders. Evolution 63:1769–1784CrossRef PubMed
    Kürschner WM, Kvacek Z, Dilcher DL (2008) The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc Natl Acad Sci USA 105:449–453PubMedCentral CrossRef PubMed
    Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analysis. Mol Biol Evol 29:1695–1701CrossRef PubMed
    Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393CrossRef
    MacArthur RH (1984) Geographical ecology: patterns in the distribution of species. Princeton University Press, Princeton
    Mayden RL (1985) Biogeography of Ouachita Highland fishes. Southwest Nat 30:195–211CrossRef
    Mayden RL (1988) Vicariance biogeography, parsimony, and evolution in North American freshwater fishes. Syst Zool 37:329–355CrossRef
    Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9:373–375CrossRef PubMed
    Morrone JJ (2009) Evolutionary biogeography: an integrative approach with case studies. Columbia University Press, New York
    Mueller RL, Macey JR, Jaekel M, Wake DB, Boore JL (2004) Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. Proc Natl Acad Sci USA 101:13820–13825PubMedCentral CrossRef PubMed
    Near TJ, Keck BP (2005) Dispersal, vicariance, and timing of diversification in Nothonotus darters. Mol Ecol 14:3485–3496CrossRef PubMed
    Near TJ, Page LM, Mayden RL (2001) Intraspecific phylogeography of Percina evides (Percidae: Etheostomatinae): an additional test of the Central Highlands pre-Pleistocene vicariance hypothesis. Mol Ecol 10:2235–2240CrossRef PubMed
    Peterson AT (2001) Predicting species’ geographic distributions based on ecological niche modeling. Condor 103:599–605CrossRef
    Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton
    Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from Vostok ice core, Antarctica. Nature 399:429–436CrossRef
    Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington, DC
    Petranka JW, Murray SS (2001) Effectiveness of removal sampling for determining salamander density and biomass: a case study in an Appalachian streamside community. J Herpetol 35:36–44CrossRef
    Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRef
    Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRef
    Pyron RA, Burbrink FT (2010) Hard and soft allopatry: physically and ecologically mediated modes of geographic speciation. J Biogeogr 37:2005–2015
    Rader RB, Belk MC, Shiozawa DK, Crandall KA (2005) Empirical tests for ecological exchangeability. Anim Conserv 8:239–247CrossRef
    Rambaut A, Drummond AJ (2009) Tracer v.1.6. http://​beast.​bio.​ed.​ac.​uk/​Tracer
    Rissler LJ, Smith WH (2010) Mapping amphibian contact zones and phylogeographic break hotspots across the United States. Mol Ecol 19:5404–5416CrossRef PubMed
    Semlitsch RD, O’Donnell KM, Thompson FR III (2014) Abundance, biomass production, nutrient content, and the possible role of terrestrial salamanders in Missouri Ozark forest ecosystems. Can J Zool 92:997–1004CrossRef
    Shepard DB, Burbrink FT (2008) Lineage diversification and historical demography of a sky island salamander, Plethodon ouachitae, from the Interior Highlands. Mol Ecol 17:5315–5335CrossRef PubMed
    Shepard DB, Burbrink FT (2009) Phylogeographic and demographic effects of Pleistocene climatic fluctuations in a montane salamander, Plethodon fourchensis. Mol Ecol 18:2243–2262CrossRef PubMed
    Shepard DB, Burbrink FT (2011) Local-scale environmental variation generates highly divergent lineages associated with stream drainages in a terrestrial salamander, Plethodon caddoensis. Mol Phylogenet Evol 59:399–411CrossRef PubMed
    Sites JW Jr, Morando M, Highton R, Huber F, Jung RE (2004) Phylogenetic relationships of the endangered Shenandoah Salamander (Plethodon shenandoah) and other salamanders of the Plethodon cinereus group (Caudata: Plethodontidae). J Herpetol 38:96–105CrossRef
    Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15:4261–4293CrossRef PubMed
    Spotila JR (1972) Temperature and water in the ecology of lungless salamanders. Ecol Monogr 42:95–125CrossRef
    Stockman AK, Bond JE (2007) Delimiting cohesion species: extreme population structuring and the role of ecological interchangeability. Mol Ecol 16:3374–3392CrossRef PubMed
    Strange RM, Burr BM (1997) Intraspecific phylogeography of North American highland fishes: a test of the Pleistocene vicariance hypothesis. Evolution 51:885–897CrossRef
    Swenson NG, Howard DJ (2005) Clustering of contact zones, hybrid zones, and phylogeographic breaks in North America. Am Nat 166:581–591CrossRef PubMed
    Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293CrossRef PubMed
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentral CrossRef PubMed
    Wake DB (2009) What salamanders have taught us about evolution. Annu Rev Ecol Evol Syst 40:333–352CrossRef
    Watts WA (1980) The Late Quaternary vegetation history of the southeastern United States. Annu Rev Ecol Syst 11:387–409CrossRef
    Webb T III, Bartlein PJ (1992) Global changes during the last 3 million years: climatic controls and biotic responses. Annu Rev Ecol Syst 23:141–173CrossRef
    Weisrock DW, Larson A (2006) Testing hypotheses of speciation in the Plethodon jordani species complex with allozymes and mitochondrial DNA sequences. Biol J Linn Soc 89:25–51CrossRef
    Werle E, Schneider C, Renner M, Völker M, Fiehn W (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nucl Acids Res 22:4354–4355PubMedCentral CrossRef PubMed
    Wiens JJ (2004) Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58:193–197CrossRef PubMed
    Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539CrossRef
    Wiens JJ, Engstrom TN, Chippendale PT (2006) Rapid diversification, incomplete isolation, and the “speciation clock” in North American salamanders (Genus: Plethodon): testing the hybrid swarm hypothesis of rapid radiation. Evolution 60:2585–2603PubMed
    Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRef PubMed
  • 作者单位:Benjamin D. Thesing (1)
    Richard D. Noyes (1)
    David E. Starkey (1) (2)
    Donald B. Shepard (1)

    1. Department of Biology, University of Central Arkansas, 201 Donaghey Ave., LSC 180, Conway, AR, 72035, USA
    2. Department of Biology, University of the Incarnate Word, 4301 Broadway, San Antonio, TX, 78209, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Evolutionary Biology
    Plant Sciences
    Human Genetics
  • 出版者:Springer Netherlands
  • ISSN:1573-8477
文摘
The southeastern United States (U.S.) has experienced dynamic climatic changes over the past several million years that have impacted species distributions. In many cases, contiguous ranges were fragmented and a lack of gene flow between allopatric populations led to genetic divergence and speciation. The Southern Red-backed Salamander, Plethodon serratus, inhabits four widely disjunct regions of the southeastern U.S.: the southern Appalachian Mountains, the Ozark Plateau, the Ouachita Mountains, and the Southern Tertiary Uplands of central Louisiana. We integrated phylogenetic analysis of mitochondrial DNA sequences (1399 base pairs) with ecological niche modeling to test the hypothesis that climate fluctuations during the Pleistocene drove the isolation and divergence of disjunct populations of P. serratus. Appalachian, Ozark, and Louisiana populations each formed well-supported clades in our phylogeny. Ouachita Mountain populations sorted into two geographically distinct clades; one Ouachita clade was sister to the Louisiana clade whereas the other Ouachita clade grouped with the Appalachian and Ozark clades but relationships were unresolved. Plethodon serratus diverged from its sister taxon, P. sherando, ~5.4 million years ago (Ma), and lineage diversification within P. serratus occurred ~1.9–0.6 Ma (Pleistocene). Ecological niche models showed that the four geographic isolates of P. serratus are currently separated by unsuitable habitat, but the species was likely more continuously distributed during the colder climates of the Pleistocene. Our results support the hypothesis that climate-induced environmental changes during the Pleistocene played a dominant role in driving isolation and divergence of disjunct populations of P. serratus. Keywords Allopatric speciation Biogeography Climate change Cryptic species Lineage diversification Ecological niche modeling

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700