Convergent Geometric Estimators with Digital Volume and Surface Integrals
详细信息    查看全文
  • 关键词:Digital geometry ; Volume estimation ; Moments estimation ; Normal estimation ; Curvatures estimation ; Area estimation ; Multigrid convergence ; Digital integration ; Integral invariants ; Digital moments ; Voronoi covariance measure ; Stability
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9647
  • 期:1
  • 页码:3-17
  • 全文大小:928 KB
  • 参考文献:[BGCF95]Bullard, J.W., Garboczi, E.J., Carter, W.C., Fullet, E.R.: Numerical methods for computing interfacial mean curvature. Comput. Mater. Sci. 4, 103–116 (1995)CrossRef
    [BLM15]Buet, B., Leonardi, G.P., Masnou, S.: Discrete varifolds: a unified framework for discrete approximations of surfaces and mean curvature. In: Aujol, J.F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 513–524. Springer, Cham (2015)
    [Bue14]Buet, B.: Approximation de surfaces par des varifolds discrets: représentation, courbure, rectifiabilité. Ph.D. thesis, Université Claude Bernard-Lyon I, France (2014)
    [CCSM11]Chazal, F., Cohen-Steiner, D., Mérigot, Q.: Geometric inference for probability measures. Found. Comput. Math. 11(6), 733–751 (2011)MathSciNet CrossRef MATH
    [CK04]Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 252–258 (2004)CrossRef
    [CLL13]Coeurjolly, D., Lachaud, J.-O., Levallois, J.: Integral based curvature estimators in digital geometry. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 215–227. Springer, Heidelberg (2013)CrossRef
    [CLL14]Coeurjolly, D., Lachaud, J.-O., Levallois, J.: Multigrid convergent principal curvature estimators in digital geometry. Comput. Vis. Image Underst. 129, 27–41 (2014)CrossRef MATH
    [CLMT15]Cuel, L., Lachaud, J.-O., Mérigot, Q., Thibert, B.: Robust geometry estimation using the generalized voronoi covariance measure. SIAM J. Imaging Sci. 8(2), 1293–1314 (2015)MathSciNet CrossRef MATH
    [CLR12]Coeurjolly, D., Lachaud, J.-O., Roussillon, T.: Multigrid convergence of discrete geometric estimators. In: Brimkov, V.E., Barneva, R.P. (eds.) Digital Geometry Algorithms, Theoretical Foundations and Applications of Computational Imaging. LNCVB, vol. 2, pp. 395–424. Springer, Dordrecht (2012)
    [CLT14]Cuel, L., Lachaud, J.-O., Thibert, B.: Voronoi-based geometry estimator for 3D digital surfaces. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668, pp. 134–149. Springer, Heidelberg (2014)
    [dVL09]de Vieilleville, F., Lachaud, J.-O.: Comparison and improvement of tangent estimators on digital curves. Pattern Recogn. 42(8), 1693–1707 (2009)CrossRef MATH
    [EP16]Edelsbrunner, H., Pausinger, F.: Approximation and convergence of the intrinsic volume. Adv. Math. 287, 674–703 (2016)MathSciNet CrossRef MATH
    [Guo10]Guo, J.: On lattice points in large convex bodies. arXiv e-prints (2010)
    [HKS15]Hug, D., Kiderlen, M., Svane, A.M.: Voronoi-based estimation of minkowski tensors from finite point samples (2015)
    [Hux90]Huxley, M.N.: Exponential sums and lattice points. Proc. Lond. Math. Soc. 60, 471–502 (1990)MathSciNet CrossRef MATH
    [KN91]Krätzel, E., Nowak, W.G.: Lattice points in large convex bodies. Monatshefte für Mathematik 112, 61–72 (1991)MathSciNet CrossRef MATH
    [KR04]Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann, San Francisco (2004)MATH
    [KŽ00]Klette, R., Žunić, J.: Multigrid convergence of calculated features in image analysis. J. Math. Imaging Vis. 13, 173–191 (2000)MathSciNet CrossRef MATH
    [LCLng]Lachaud, J.-O., Coeurjolly, D., Levallois, J.: Robust and convergent curvature and normal estimators with digital integral invariants. In: Mdoern Approaches to Discrete Curvature. Lecture Notes in Mathematics. Springer International Publishing (2016, forthcoming)
    [LT15]Lachaud, J.-O., Thibert, B.: Properties of gauss digitized sets and digital surface integration. J. Math. Imaging Vis. 54(2), 162–180 (2016)MathSciNet CrossRef
    [M99]Müller, W.: Lattice points in large convex bodies. Monatshefte für Mathematik 128, 315–330 (1999)MathSciNet CrossRef MATH
    [MOG11]Mérigot, Q., Ovsjanikov, M., Guibas, L.: Voronoi-based curvature and feature estimation from point clouds. IEEE Trans. Visual. Comput. Graph. 17(6), 743–756 (2011)CrossRef
    [PWHY09]Pottmann, H., Wallner, J., Huang, Q., Yang, Y.: Integral invariants for robust geometry processing. Comput. Aided Geom. Des. 26(1), 37–60 (2009)MathSciNet CrossRef MATH
    [PWY+07]Pottmann, H., Wallner, J., Yang, Y., Lai, Y., Hu, S.: Principal curvatures from the integral invariant viewpoint. Comput. Aided Geom. Des. 24(8–9), 428–442 (2007)MathSciNet CrossRef MATH
    [SLS07]Stelldinger, P., Latecki, L.J., Siqueira, M.: Topological equivalence between a 3D object and the reconstruction of its digital image. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 126–140 (2007)CrossRef
  • 作者单位:Jacques-Olivier Lachaud (16)

    16. Laboratoire de Mathématiques (LAMA), CNRS, UMR 5127, Université Savoie Mont Blanc, Chambéry, France
  • 丛书名:Discrete Geometry for Computer Imagery
  • ISBN:978-3-319-32360-2
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
文摘
This paper presents several methods to estimate geometric quantities on subsets of the digital space \(\mathbb {Z}^d\). We take an interest both on global geometric quantities like volume and area, and on local geometric quantities like normal and curvatures. All presented methods have the common property to be multigrid convergent, i.e. the estimated quantities tend to their Euclidean counterpart on finer and finer digitizations of (smooth enough) Euclidean shapes. Furthermore, all methods rely on digital integrals, which approach either volume integrals or surface integrals along shape boundary. With such tools, we achieve multigrid convergent estimators of volume, moments and area in \(\mathbb {Z}^d\), of normals, curvature and curvature tensor in \(\mathbb {Z}^2\) and \(\mathbb {Z}^3\), and of covariance measure and normals in \(\mathbb {Z}^d\) even with Hausdorff noise.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700