A biomechanical sorting of clinical risk factors affecting osteoporotic hip fracture
详细信息    查看全文
  • 作者:Y. Luo
  • 关键词:Biomechanical variables ; Clinical ; biomechanical links ; Clinical risk factors ; Osteoporosis ; Hip fracture
  • 刊名:Osteoporosis International
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:27
  • 期:2
  • 页码:423-439
  • 全文大小:756 KB
  • 参考文献:1.World Health Organization Collaborating Centre for Metabolic Bone Diseases. FRAX®: WHO Fracture Risk Assessment Tool. http://​www.​shef.​ac.​uk/​FRAX/​ . University of Sheffield, UK
    2.Kanis JA, Hans D, Cooper C, Baim S, Bilezikian JP, Binkley N, Cauley JA, Compston JE, Dawson-Hughes B, El-Hajj Fuleihan G, Johansson H, Leslie WD, Lewiecki EM, Luckey M, Oden A, Papapoulos SE, Poiana C, Rizzoli R, Wahl DA, McCloskey EV (2011) Interpretation and use of FRAX in clinical practice. Osteoporos Int 22:2395–2411PubMed CrossRef
    3.Kanis JA, Odén A, Johansson H, Borgström F, Ström O, McCloskey EV (2010) FRAX®, a new tool for assessing fracture risk: clinical applications and intervention thresholds. Medicographia 32:33–40
    4.Lewiecki EM, Watts NB (2009) New guidelines for the prevention and treatment of osteoporosis. South Med J 102:175–179PubMed CrossRef
    5.Silverman SL, Calderon AD (2010) The utility and limitations of FRAX: a US perspective. Current Osteoporosis Reports 8:192–197PubMedCentral PubMed CrossRef
    6.McClung MR (2012) To FRAX or not to FRAX. J Bone Miner Res 27:1240–1242PubMed CrossRef
    7.Roux S, Cabana F, Carrier N, Beaulieu M, April P-M, Beaulieu M-C, Boire G (2014) The World Health Organization Fracture Risk Assessment Tool (FRAX) underestimates incident and recurrent fractures in consecutive patients with fragility fractures. J Clin Endocrinol Metabolism 99:2400–2408CrossRef
    8.Luo Y, Nasirisarvi M, Sun P, Leslie W, Ouyang J (2014) Prediction of impact force in sideways fall of the elderly by DXA-based subject-specific dynamics modeling. Int Biomech 1:1–14CrossRef
    9.Greenspan SL, Myers ER, Kiel DP, Parker RA, Hayes WC, Resnick NM (1998) Fall direction, bone mineral density, and function: risk factors for hip fracture in frail nursing home elderly. Am J Med 104:539–45PubMed CrossRef
    10.Verhulp E, van Rietbergen B, Huiskes R (2008) Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone 42:30–35PubMed CrossRef
    11.Sinaki M (2004) Falls, fractures, and hip pads. Curr Osteoporos Rep 2:131–7PubMed CrossRef
    12.de Bakker PM, Manske SL, Ebacher V, Oxland TR, Cripton PA, Guy P (2009) During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures. J Biomech 42:1917–25PubMed CrossRef
    13.Nankaku M, Kanzaki H, Tsuboyama T, Nakamura T (2005) Evaluation of hip fracture risk in relation to fall direction. Osteoporos Int 16(11):1315–20PubMed CrossRef
    14.Robinovitch SN, Feldman F, Yang Y, Schonnop R, Leung PM, Sarraf T, Sims-Gould J, Loughin M (2013) Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. Lancet 381:47–54PubMedCentral PubMed CrossRef
    15.Pinilla TP, Boardman KC, Bouxsein ML, Myers ER, Hayes WC (1996) Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int 58:231–235PubMed CrossRef
    16.Ford CM, Keaveny TM, Hayes WC (1996) The effect of impact direction on the structural capacity of the proximal femur during falls. J Bone Miner Res 11:377–383PubMed CrossRef
    17.Robinovitch SN, Hayes WC, McMahon TA (1991) Prediction of femoral impact forces in falls on the Hip. ASME J Biomech Eng 113:366–374CrossRef
    18.Lotz JC, Cheal EJ, Hayes WC (1995) Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int 5:252–261PubMed CrossRef
    19.Cumming R, Klineberg R (1994) Fall frequency and characteristics and the risk of hip fractures. J Am Geriatr Soc 42:774–778PubMed CrossRef
    20.Kannus P, Leiponen P, Parkkari J, Palvanen M, Jarvinen M (2006) A sideways fall and hip fracture. Bone 39:383–384PubMed CrossRef
    21.Alonso CG, Curiel MD, Carranza FH, Cano RP, Perez AD, and the Multicenter Project for Research in Osteoporosis (2000) Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Osteoporosis Int 11:714–720CrossRef
    22.Calis HT, Eryavuz M, Calis M (2004) Comparison of femoral geometry among cases with and without hip fractures. Yonsei Med J 45:901–7PubMed CrossRef
    23.Karlsson KM, Sernbo I, Obrant KJ, RedlundJohnell I, Johnell O (1996) Femoral neck geometry and radiographic signs of osteoporosis as predictors of hip fracture. Bone 18:327–30PubMed CrossRef
    24.El-Kaissi S, Pasco JA, Henry MJ, Panahi S, Nicholson JG, Nicholson GC et al (2005) Femoral neck geometry and hip fracture risk: the geelong osteoporosis study. Osteoporos Int 16:1299–303PubMed CrossRef
    25.Boonen S, Koutri R, Dequeker J, Aerssens J, Lowet G, Nijs J et al (1995) Measurement of femoral geometry in Type-I and Type-II osteoporosis—differences in hip axis length consistent with heterogeneity in the pathogenesis of osteoporotic fractures. J Bone Miner Res 10:1908–12PubMed CrossRef
    26.Gnudi S, Ripamonti C, Gualtieri G, Malavolta N (1999) Geometry of proximal femur in the prediction of hip fracture in osteoporotic women. Br J Radiol 72:729–33PubMed CrossRef
    27.Rosso R, Mikhail MB (2000) Hip axis length in an Italian osteoporotic population. Br J Radiol 73:969–72PubMed CrossRef
    28.Bergot C, Bousson V, Meunier A, Laval-Jeantet M, Laredo JD (2002) Hip fracture risk and proximal femur geometry from DXA scans. Osteoporos Int 13:542–50PubMed CrossRef
    29.Gnudi S, Ripamonti C, Lisi L, Fini M, Giardino R, Giavaresi G (2002) Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women. Osteoporos Int 13:69–73PubMed CrossRef
    30.Frisoli J, Paula AP, Pinheiro M, Szejnfeld VL, Monte Piovezan R, Takata E et al (2005) Hip axis length as an independent risk factor for hip fracture independently of femural bone mineral density in Caucasian elderly Brazilian women. Bone 37:871–5PubMed CrossRef
    31.Faulkner KG, Wacker WK, Barden HS, Simonelli C, Burke S, Ragi PK et al (2006) Femur strength index predicts hip fracture independent of bone density and hip axis length. Osteoporos Int 17:593–9PubMed CrossRef
    32.Faulkner KG, Cummings SR, Black D, Palermo L, Glüer C-C, Genant HK (1993) Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 8:1211–7PubMed CrossRef
    33.Khalili H, Huang ES, Jacobson BC, Camargo CA Jr, Feskanich D, Chan AT (2012) Use of proton pump inhibitors and risk of hip fracture in relation to dietary and lifestyle factors: a prospective cohort study. BMJ 344, e372PubMedCentral PubMed CrossRef
    34.Gray SL, LaCroix AZ, Larson J, Robbins J, Cauley JA, Manson JE, Chen Z (2010) Proton pump inhibitor use, hip fracture, and change in bone mineral density in postmenopausal women: results from the Women’s Health Initiative. Arch Intern Med 170:765–71PubMedCentral PubMed CrossRef
    35.Fraser LA, Leslie WD, Targownik LE, Papaioannou A, Adachi JD, and (CaMos Research Group) (2013) The effect of proton pump inhibitors on fracture risk: report from the Canadian multicenter osteoporosis study. Osteoporos Int 24:1161–8PubMed CrossRef
    36.Carbone LD, Tylavsky FA, Cauley JA, Harris TB, Lang TF, Bauer DC, Barrow KD, Kritchevsky SB (2003) Association between bone mineral density and the use of nonsteroidal anti-inflammatory drugs and aspirin: impact of cyclooxygenase selectivity. J Bone Miner Res 18:1795–1802PubMed CrossRef
    37.Cobb KL, Kelsey JL, Sidney S, Ettinger B, Lewis CE (2002) Oral contraceptives and bone mineral density in white and black women in CARDIA. Osteoporos Int 13:893–900PubMed CrossRef
    38.Rapuri PB, Gallagher JC, Kinyamu HK, Ryschon KL (2001) Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am J Clin Nutr 74:694–700PubMed
    39.Carbone LD, Bush AJ, Barrow KD, Kang AH (2003) The relationship of sodium intake to calcium and sodium excretion and bone mineral density of the hip in postmenopausal African-American and Caucasian women. J Bone Miner Metab 21:415–420PubMed CrossRef
    40.Corwin RL, Hartman TJ, Maczuga SA, Graubard BI (2006) Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III. J Nutr 136:159–165PubMed
    41.McCabe LD, Martin BR, McCabe GP, Johnston CC, Weaver CM, Peacock M (2004) Dairy intakes affect bone density in the elderly. Am J Clin Nutr 80:1066–1074PubMed
    42.Opotowsky AR, Bilezikian JP (2003) Racial differences in the effect of early milk consumption on peak and postmenopausal bone mineral density. J Bone Miner Res 18:1978–1988PubMed CrossRef
    43.Ryder KM, Shorr RI, Bush AJ, Kritchevsky SB, Harris T, Stone K, Cauley JA, Tylavsky FA (2005) Magnesium intake from food and supplements is associated with bone mineral density in healthy older white subjects. J Am Geriatr Soc 53:1875–1880PubMed CrossRef
    44.Pescatello LS, Murphy DM, Anderson D, Costanzo D, Dulipsingh L, De Souza MJ (2002) Daily physical movement and bone mineral density among a mixed racial cohort of women. Med Science Sports Exercise 34:1966–1970CrossRef
    45.JP, Joseph Castro LA, Shin JJ, Arora SK, Nicasio J, Shatzkes J, Raklyar I, Erlikh I, Pantone V, Bahtiyar G, Chandler L, Pabon L, Choudhry S, Ghadiri N, Gosukonda P, Muniyappa R, von Gicyzki H, McFarlane SI (2005) Differential effect of obesity on bone mineral density in White, Hispanic, and African American women: a cross-sectional study. Nutr Metab, 2:2–9
    46.Schwartz AV, Sellmeyer DE, Strotmeyer ES, Tylavsky FA, Feingold KR, Resnick HE, Shorr RI, Nevitt MC, Black DM, Cauley JA, Cummings SR, Harris TB (2005) Diabetes and bone loss at the hip in older black and white adults. J Bone Miner Res 20:596–603PubMed CrossRef
    47.Lauderdale DS, Rathouz PJ (2003) Does bone mineralization reflect economic conditions? An example using a national US sample. Econ Hum Biol 1:91–104PubMed CrossRef
    48.Dhanwal DK, Cooper C, Dennison EM (2010) Geographic Variation in Osteoporotic Hip Fracture Incidence: The Growing Importance of Asian Influences in Coming Decades. J Ostoporosis, (Article ID 757102):5 pages
    49.Cooper C, Cole ZA, Holroyd CR, Earl SC, Harvey NC, Dennison EM, Melton LJ, Cummings SR, Kanis JA, The IOF CSAWorking Group on Fracture Epidemiolog (2011) Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int 22:1277–1288PubMedCentral PubMed CrossRef
    50.Wright NC, Saag KG, Curtis JR, Smith WK, Kilgore ML, Morrisey MA, Yun H, Zhang J, Delzell ES (2012) Recent trends in Hip fracture rates by race/ethnicity among older US adults. J Bone Miner Res 27:2325–2332PubMed CrossRef
    51.Maravic M, Taupin P, Landais P, Roux C (2011) Change in hip fracture incidence over the last 6 years in France. Osteoporos Int 22:797–801PubMed CrossRef
    52.Dhanwal D, Dennison E, Harvey N, Cooper C (2011) Epidemiology of hip fracture: worldwide geographic variation. Indian J Orthopaedics 45:15–22CrossRef
    53.Lim S, Koo BK, Lee EJ, Park JH, Kim MH, Shin KH, Ha YC, Cho NH, Shin CS (2008) J Bone Miner Metab 26:400–405PubMed CrossRef
    54.Xia WB, He SL, Xu L, Liu AM, Jiang Y, Li M, Wang O, Xing XP, Sun Y, Cummings SR (2012) Rapidly increasing rates of hip fracture in Beijing, China. J Bone Miner Res 27:125–9PubMed CrossRef
    55.Nyirongo VB, Mukaka MM, Kalilani-Phiri LV (2008) Statistical pitfalls in medical research. Malawi Med J 20:15–18PubMedCentral PubMed CrossRef
    56.Johansson H, Kanis JA, Odén A, McCloskey E, Chapurlat RD, Christiansen C, Cummings SR, Diez-Perez A, Eisman JA, Fujiwara S, Glüer CC, Goltzman D, Hans D, Khaw KT, Krieg MA, Kröger H, LaCroix AZ, Lau E, Leslie WD, Mellström D, 3rd Melton LJ, O’Neill TW, Pasco JA, Prior JC, Reid DM, Rivadeneira F, van Staa T, Yoshimura N, Zillikens MC (2014) A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res 29:223–233PubMed CrossRef
    57.Premaor MO, Pilbrow L, Tonkin C, Parker RA, Compston J (2010) Obesity and fractures in postmenopausal women. J Bone Miner Res 25:292–297PubMed CrossRef
    58.Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, Pfeilschifter J, Silverman S, Díez-Pérez A, Lindsay R, Saag KG, Netelenbos JC, Gehlbach S, Hooven FH, Flahive J, Adachi JD, Rossini M, Lacroix AZ, Roux C, Sambrook PN, Siris ES, Glow Investigators (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124:1043–1050PubMed CrossRef
    59.3rd Melton LJ, Riggs BL, van Lenthe GH, Achenbach SJ, Müller R, Bouxsein ML, Amin S, Atkinson EJ, Khosla S (2007) Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women. J Bone Miner Res 22:1442–8PubMed CrossRef
    60.Dufour AB, Roberts B, Broe KE, Kiel DP, Bouxsein ML, Hannan MT (2012) The factor-of-risk biomechanical approach predicts hip fracture in men and women: the Framingham study. Osteoporos Int 23:513–520PubMedCentral PubMed CrossRef
    61.Filipov O (2014) Femoral neck fractures – biological aspects and risk factors. J IMAB 20:513–515
    62.Keaveny TM, Bouxsein ML (2008) Theoretical implications of the biomechanical fracture threshold. J Bone Miner Res 23:1541–7PubMedCentral PubMed CrossRef
    63.Orwoll ES, Marshall LM, Nielson CM et al (2009) Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res 24:475–483PubMedCentral PubMed CrossRef
    64.International Bone and Mineral Society (2013) DXA plus measurement of bone strength predict fracture risk more accurately. IBMS BoneKEy Rep
    65.Dufour AB, Roberts B, Kiel DP, Bouxsein ML, Hannan MT (2009) A Biomechanical Approach Predicts Hip Fracture Independent of Bone Mineral Density (BMD) in Women: The Framingham Osteoporosis Study. In Arthritis & Rheumatism, volume 60, Philadelphia, October 16–21 2009. The 2009 ACR/ARHP Annual Scientific Meeting
    66.Myers ER, Wilson SE (1997) Biomechanics of osteoporosis and vertebral fracture. Spine 22:25S–31SPubMed CrossRef
    67.Hayes WC, Piazza SJ, Zysset PK (1991) Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol Clin North Am 29:1–18PubMed
    68.Duan Y, Seeman E, Turner CH (2001) The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res 16:2276–2283PubMed CrossRef
    69.Duan Y, Duboeuf F, Munoz F, Delmas PD, Seeman E (2006) The fracture risk index and bone mineral density as predictors of vertebral structural failure. Osteoporos Int 17:54–60PubMed CrossRef
    70.Luo Y, Ferdous Z, Leslie WD (2011) A preliminary dual-energy X-ray absorptiometry-based finite element model for assessing osteoporotic hip fracture risk. J Eng Med 225:1188–1195CrossRef
    71.Luo Y, Ferdous Z, Leslie WD (2013) Precision study of DXA-based patient-specific finite element modeling for assessing hip fracture risk. Int J Numerical Methods Biomed Eng 29(5):615–629CrossRef
    72.Davidenkoff NN (1934) Allowable working stresses under impact. Trans ASME 56:97–107
    73.Fiodorovich V (1932) Stresses allowable in wooden structures. Vestnik Standartizatziyi 1(37):26–29
    74.Johnson JB (1930) Allowable stresses in welded aircraft. Welding 1:309–312
    75.Miller SW (1928) Maximum allowable working fiber stresses in welded structures. Am Welding Soc – J 7:21–27
    76.Albert CD (1922) Factors of safety and allowable stress. Am Mach 57:54–57
    77.Lash SD, Brison JW (1950) Ultimate strength of reinforced concrete beams. Am Concrete Institute – J 21:457–470
    78.Berry JS (1943) Ultimate strength formulae for concrete columns. Civ Eng 38:103–104
    79.Mononobe N (1934) Ultimate strength of building structures against earthquake. Tokyo Imperial Univ – Earthquake Res Institute – Bulletin 12:35–43
    80.Newlin JA, Trayer GW (1931) A method of calculating the ultimate strength of continuous beams. National Advisory Committee for Aeronautics – Reports, page (28 pages)
    81.Johnson JB (1897) The ultimate strength of concrete-steel beams. Eng News
    82.Michelson JD, Myers A, Jinnah R, Cox Q, Van Natta M (1995) Epidemiology of hip fractures among the elderly: risk factors for fracture type. Clin Orthopaedics Related Res 311:129–135
    83.Kopperdahl DL, Morgan EF et al (2002) Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone. J Orthopaed Res 20:801–805CrossRef
    84.Kopperdahl DL, Keaveny TM (1998) Yield strain behavior of trabecular bone. J Biomech 31:601–608PubMed CrossRef
    85.Wirtz DC, Schiffers N, Pandorf T, Radermacher KS, Weichert D, Forst R (2000) Critical evaluation of known bone material properties to realize anisotropic fe-simulation of the proximal femur. J Biomech 33:1325–1330PubMed CrossRef
    86.Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus–density relationships depend on anatomic site. J Biomech, 36
    87.Snyder SM, Schneider E (1991) Estimation of mechanical properties of cortical bone by computed tomography. J Orthop Res 9:422–431PubMed CrossRef
    88.Wachter NJ, Krischak GD, Mentzel M, Sarkar MR, Ebinger T, Kinzl L, Claes L, Augat P (2002) Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone 31:90–95PubMed CrossRef
    89.Keller TS (1994) Predicting the compressive mechanical behavior of bone. J Biomech 27:1159–1168PubMed CrossRef
    90.Juszczyk MM, Cristofolini L, Viceconti M (2011) The human proximal femur behaves linearly elastic up to failure under physiological loading conditions. J Biomech 44:2259–66PubMed CrossRef
    91.Helgason B, Perilli E et al (2008) Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech 23:135–146CrossRef
    92.Oliver D, Britton M, Seed P, Martin FC, Hopper AH (1997) Development and evaluation of evidence based risk assessment tool (STRATIFY) to predict which elderly inpatients will fall: case–control and cohort studies. Br Med J 315:1049–1053CrossRef
    93.Close J, Hooper R, Glucksman E, Jackson S, Swift C (2003) Predictors of falls in a high risk population: results from the prevention of falls in the elderly trial (PROFET). Emergency Med J 20:421–425CrossRef
    94.Nandy S, Parsons S, Cryer C, Underwood M, Rashbrook E, Carter Y, Eldridge S, Close J, Skelton D, Taylor S, Feder G, Falls Prevention Pilot Steering Group (2004) Development and preliminary examination of the predictive validity of the falls risk assessment tool (FRAT) for use in primary care. J Public Health 26:138–43CrossRef
    95.Tromp AM, Pluijm SM, Smit JH, Deeg DJ, Bouter LM, Lips P (2001) Fall-risk screening test: a prospective study on predictors for falls in community-dwelling elderly. J Clin Epidemiol 54:837–44PubMed CrossRef
    96.Raîche M, Hébert R, Prince F, Corriveau H (2000) Screening older adults at risk of falling with the Tinetti balance scale. Lancet 356:1001–2PubMed CrossRef
    97.Berg KO, Wood-Dauphinee SL, Williams JI, Maki B (1992) Measuring balance in the elderly: validation of an instrument. Can J Public Health 83(Suppl 2):S7–11PubMed
    98.Podsiadlo D, Richardson S (1991) The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39:142–8PubMed CrossRef
    99.Lundin-Olsson L, Nyberg L, Gustafson Y (2000) The mobility interaction fall chart. Physiother Res Int 5:190–201PubMed CrossRef
    100.Lundin-Olsson L, Jensen J, Nyberg L, Gustafson Y (2003) Predicting falls in residential care by a risk assessment tool, staff judgement, and history of falls. Aging Clin Exp Res 15:51–9PubMed CrossRef
    101.Stel VS, Pluijm SM, Deeg DJ, Smit JH, Bouter LM, Lips P (2003) A classification tree for predicting recurrent falling in community-dwelling older persons. J Am Geriatr Soc 51:1356–64PubMed CrossRef
    102.Laessoe U, Hoeck HC, Simonsen O, Sinkjaer T, Voigt M (2007) Fall risk in an active elderly population–can it be assessed? J Negat Results Biomed, 26(6:2)
    103.Graafmans WC, Ooms ME, Hofsfee HMA, Bezemer PD, Bouter LM, Lips P. Falls in the elderly: A prospective study of risk factors and risk profiles. Am J Epidemiol, 143:1129–1136
    104.Lockhart TE, Yeoh HT, Soangra R, Jongprasithporn M, Zhang J, Wu X, Ghosh A (2012) Non-invasive fall risk assessment in community dwelling elderly with wireless inertial measurement units. Biomed Sci Instrum 48:260–7PubMedCentral PubMed
    105.Todd C, Skelton D (2004) What are the main risk factors for falls among older people and what are the most effective interventions to prevent these falls? Technical report, WHO Regional Office for Europe, Copenhagen, 2004. (Health Evidence Network report; http://​www.​euro.​who.​int/​document/​E82552.​pdf )
    106.Feldman F, Robinovitch SN (2007) Reducing hip fracture risk during sideways falls: evidence in young adults of the protective effects of impact to the hands and stepping. J Biomech 40:2612–2618PubMed CrossRef
    107.Van den Kroonenberg AJ, Hayes WC, McMahon TA (1996) Hip impact velocities and body configurations for voluntary falls from standing height. J Biomech 29:807–811PubMed CrossRef
    108.Laing AC, Robinovitch SN (2010) Characterizing the effective stiffness of the pelvis during sideways falls on the hip. J Biomech 43:1898–1904PubMed CrossRef
    109.Robinovitch SN, McMahon TA, Hayes WC (1995) Force attenuation in trochanteric soft tissues during impact from a fall. J Orthop Res 13:956–962PubMed CrossRef
    110.Van den Kroonenberg AJ, Hayes WC, McMahon TA (1995) Dynamic models for sideways falls from standing height. J Biomech Eng 117:309–318PubMed CrossRef
    111.Luo Y, Nasiri Sarvi M, Sun P, Ouyang J (2014) Subject specific dynamics model for predicting impact force in elderly lateral fall. Applied Mech Materials 446–447:339–343CrossRef
    112.Luo Y, Nasiri Sarvi M (2015) A subject-specific inverse-dynamics approach for estimating joint stiffness in sideways fall. Int J Experimental Computational Biomech 3:137–160CrossRef
    113.Nasiri Sarvi M, Luo Y (2015) A two-level subject-specific biomechanical model for improving prediction of hip fracture risk. Clin Biomech. doi:10.​1016/​j.​clinbiomech.​2015.​05.​013
    114.Nasiri Sarvi M, Luo Y, Sun P, Ouyang J (2014) Experimental validation of subject-specific dynamics model for predicting impact force in sideways fall. J Biomed Sci Eng 7:405–418CrossRef
    115.Yoshikawa T, Turner CH, Peacock M, Slemenda CW, Weaver CM, Teegarden D (1994) P Markwardt, and D.B. Burr. Geometric structure of the femoral neck measured using dual-energy X-ray absorptiometry. J Bone Miner Res 9:1053–64PubMed CrossRef
    116.Van der Zijden AM, Groen BE, Tanck E, Nienhuis B, Verdonschot N, Weerdesteyn V (2012) Can martial arts techniques reduce fall severity? An in vivo study of femoral loading configurations in sideways falls. J Biomech 45:1650–1655PubMed CrossRef
    117.Dalstra M, Huiskes R, Odgaard A, van Erning L (1993) Mechanical and textural properties of pelvic trabecular bone. J Biomech 26:523–35PubMed CrossRef
    118.Kaneko TS, Bell JS, Pejcic MR, Tehranzadeh J, Keyak JH (2004) Mechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases. J Biomech 37:523–30PubMed CrossRef
    119.McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA 3rd (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg Am 67:1206–1214PubMed
    120.Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA (2000) Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res 15:32–40PubMed CrossRef
    121.Lotz JC, Gerhart TN, Hayes WC (1990) Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J Comput Assist Tomogr 14:107–114PubMed CrossRef
    122.Lotz JC, Cheal EJ, Hayes WC (1991) Fracture prediction for the proximal femur using finite element models. i. linear analysis. Trans ASME J Biomech Eng 113(4):353–60CrossRef
    123.Keaveny TM, Borchers RE, Gibson LJ, Hayes WC (1993) Trabecular bone modulus and strength can depend on specimen geometry. J Biomech 26:991–1000PubMed CrossRef
    124.Dalstra M, Huiskes R, van Erning L (1995) Development and validation of a three-dimensional finite element model of the pelvic bone. Trans ASME J Biomech Eng 117:272–8CrossRef
    125.Taddei F, Pancanti A, Viceconti M (2004) An improved method for the automatic mapping of computed tomography numbers onto finite element models. Med Eng Phys 26:61–69PubMed CrossRef
    126.Taddei F, Martelli S, Reggiani B, Cristofolini L, Viceconti M (2006) Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties. IEEE Trans Biomed Eng 53:2194–2200PubMed CrossRef
    127.Taddei F, Schileo E, Helgason B, Cristofolini L, Viceconti M (2007) The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements. Med Eng Phys 29:973–979PubMed CrossRef
    128.Keyak JH, Meagher JM, Skinner HB, Mote CD Jr (1990) Automated three-dimensional finite element modelling of bone: a new method. J Biomed Eng 12:389–397PubMed CrossRef
    129.Merz B, Niederer P, Muller R, Ruegsegger P (1996) Automated finite element analysis of excised human femora based on precision-QCT. J Biomech Eng 118:387–390PubMed CrossRef
    130.Zannoni C, Mantovani R, Viceconti M (1998) Material properties assignment to finite element models of bone structures: a new method. Med Eng Phys 20:735–740PubMed CrossRef
    131.Tizzard A, Horesh L, Yerworth RJ, Holder DS, Bayford RH (2005) Generating accurate finite element meshes for the forward model of the human head in EIT. Physiol Meas 26:S251–S26PubMed CrossRef
    132.Marco V, Fulvia T (2003) Automatic generation of finite element meshes from computed tomography data. Crit Rev Biomed Eng 31:27–72CrossRef
    133.Han BH, Ferris R, Blaum C (2014) Exploring ethnic and racial differences in falls among older adults. J Community Health 39:1241–1247PubMed CrossRef
    134.Leslie WD, Lentle B (2006) Race/ethnicity and fracture risk assessment: an issue that is more than skin deep. J Clin Densitom 9:406–412PubMed CrossRef
    135.Peacock M, Buckwalter KA, Persohn S, Hangartner TN, Econs MJ, Hui S (2009) Race and sex differences in bone mineral density and geometry at the femur. Bone 45:218–225PubMedCentral PubMed CrossRef
    136.Megyesi MS, Hunt LM, Brody H (2011) A critical review of racial/ethnic variables in osteoporosis and bone density research. Osteoporos Int 22:1669–1679PubMed CrossRef
    137.Nam H-S, Shin M-H, Zmuda JM et al (2010) Race/ethnic differences in bone mineral densities in older men. Osteoporos Int 21:2115–2123PubMedCentral PubMed CrossRef
    138.Nam H-S, Kweon S-S, Choi J-S et al (2013) Racial/ethnic differences in bone mineral density among older women. J Bone Miner Metab 31:190–198PubMedCentral PubMed CrossRef
    139.Araujo AB, Travison TG, Harris SS, Holick MF, Turner AK, McKinlay JB (2007) Race/ethnic differences in bone mineral density in men. Osteoporos Int 18:943–53PubMed CrossRef
    140.Danielson ME, Beck TJ, Lian Y, Karlamangla AS, Greendale GA, Ruppert K, Lo J, Greenspan S, Vuga M, Cauley JA (2013) Ethnic variability in bone geometry as assessed by hip structure analysis: findings from the hip strength across the menopausal transition study. J Bone Miner Res 28:771–9PubMedCentral PubMed CrossRef
    141.Osborne DL, Weaver CM, McCabe LD (2012) Body size and pubertal development explain ethnic differences in structural geometry at the femur in Asian, Hispanic, and white early adolescent girls living in the U.S. Bone 51:888–895PubMedCentral PubMed CrossRef
    142.Nelson DA, Pettifor JM, Barondess DA, Cody DD, Uusi-Rasi K, Beck TJ (2004) Comparison of cross-sectional geometry of the proximal femur in white and black women from Detroit and Johannesburg. J Bone Miner Res 19:560–5PubMed CrossRef
    143.Centers for Disease Control and Prevention (CDC) (2001–2003) QuickStats: Annual Rate of Nonfatal, Medically Attended Fall Injuries Among Adults Aged >65 Years — United States. http://​www.​cdc.​gov/​mmwr/​preview/​mmwrhtml/​mm5531a7.​htm
    144.Fink HA, Kuskowski MA, Orwoll ES et al (2005) Association between Parkinson’s disease and low bone density and falls in older men: the osteoporotic fractures in men study. J Am Geriatr Soc 53:1559–64PubMed CrossRef
    145.Bassiony MM, Rosenblatt A, Baker A et al (2004) Falls and age in patients with Alzheimer’s disease. J Nerv Ment Dis 192:570–572PubMed CrossRef
    146.de Vernejoul MC (1989) Bone remodelling in osteoporosis. Clin Rheumatol 8:13–5PubMed CrossRef
    147.Steiger P, Cummings SR, Black DM, Spencer NE, Genant HK (1992) Age-related decrements in bone mineral density in women over 65. J Bone Miner Res 7:625–32PubMed CrossRef
    148.Hannan MT, Felson DT, Anderson JJ (1992) Bone mineral density in elderly men and women: results from the Framingham osteoporosis study. J Bone Miner Res 7:547–53PubMed CrossRef
    149.Burger H, van Daele PL, Algra D, van den Ouweland FA, Grobbee DE, Hofman A, van Kuijk C, Schütte HE, Birkenhäger JC, Pols HA (1994) The association between age and bone mineral density in men and women aged 55 years and over: the Rotterdam study. Bone Miner 25:1–13PubMed CrossRef
    150.Kamei T, Aoyagi K, Matsumoto T, Ishida Y, Iwata K, Kumano H, Murakami Y, Kato Y (1999) Age-related bone loss: relationship between age and regional bone mineral density. Tohoku J Exp Med 187:141–7PubMed CrossRef
    151.Beck TJ, Looker AC, Mourtada F, Daphtary MM, Ruff CB (2006) Age trends in femur stresses from a simulated fall on the hip among men and women: evidence of homeostatic adaptation underlying the decline in hip BMD. J Bone Miner Res 21:1425–32PubMed CrossRef
    152.Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW (2000) Structural trends in the aging femoral neck and proximal shaft: analysis of the third national health and nutrition examination survey dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–304PubMed CrossRef
    153.Stevens J, Sogolow E (2005) Gender differences for non-fatal unintentional fall related injuries among older adults. Injury Prevention 11:115–119PubMedCentral PubMed CrossRef
    154.Nieves JW, Formica C, Ruffing J, Zion M, Garrett P, Lindsay R, Cosman F (2005) Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res 20:529–535PubMed CrossRef
    155.Ettinger B, Pressman A, Sklarin P, Bauer DC, Cauley JA, Cummings SR (1998) Associations between low levels of serum estradiol, bone density, and fractures among elderly women: the study of osteoporotic fractures. J Clin Endocrinol Metab 83:2239–2243PubMed
    156.Looker AC, Beck TJ, Orwoll ES (2001) Does body size account for gender differences in femur bone density and geometry? J Bone Miner Res 16:1291–1299PubMed CrossRef
    157.Faulkner RA, McCulloch RG, Fyke SL, De Coteau WE, McKay HA, Bailey DA, Houston CS, Wilkinson AA (1995) Comparison of areal and estimated volumetric bone mineral density values between older men and women. Osteoporos Int 5:271–5PubMed CrossRef
    158.Naganathan V, Sambrook P (2003) Gender differences in volumetric bone density: a study of opposite-sex twins. Osteoporos Int 14:564–9PubMed CrossRef
    159.Fjeldstad C, Fjeldstad AS, Acree LS, Nickel KJ, Gardner AW (2008) The influence of obesity on falls and quality of life. Dynamic Med 7:1–6CrossRef
    160.Bruce DG, Devine A, Prince RL (2002) Recreational physical activity in healthy older women: the importance of fear of falling. J Am Geriatr Soc 50:84–9PubMed CrossRef
    161.Bouxsein ML, Szulc P, Munoz F, Thrall E, Sornay-Rendu E, Delmas PD (2007) Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of Hip fracture risk. J Bone Miner Res 22:825–831PubMed CrossRef
    162.Majumder S, Roychowdhury A, Pal S (2013) Hip fracture and anthropometric variations: dominance among trochanteric soft tissue thickness, body height and body weight during sideways fall. Clin Biomech 28:1034–1040CrossRef
    163.Edelstein SL, Barrett-Connor E (1993) Relation between body size and bone mineral density in elderly men and women. Am J Epidemiol 138:160–9PubMed
    164.Oldroyd A, Dubey S (2015) The association between bone mineral density and higher body mass index in men. Int J Clin Pract 69:145–147PubMed CrossRef
    165.Morin S, Tsang JF, Leslie WD (2009) Weight and body mass index predict bone mineral density and fractures in women aged 40 to 59 years. Osteoporos Int 20:363–70PubMed CrossRef
    166.EL-Bikai R, Tahir MR, Tremblay J, Joffres M, Seda O et al (2015) Association of age-dependent height and bone mineral density decline with increased arterial stiffness and rate of fractures in hypertensive individual. J Hypertens 33:727–735PubMed CrossRef
    167.Khosla S, Atkinson EJ, Riggs BL, 3rd Melton LJ (1996) Relationship between body composition and bone mass in women. J Bone Miner Res 11:857–63PubMed CrossRef
    168.Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–82PubMed CrossRef
    169.Maggi S, Siviero P, Gonnelli S, Caffarelli C, Gandolini G, Cisari C, Rossini M, Iolascon G, Mauro GL, Nuti R, Crepaldi G, Break Study Group (2011) The burden of previous fractures in hip fracture patients. The break study. Aging Clin Exp Res 23:183–6PubMed CrossRef
    170.Center JR, Bliuc D, Nguyen TV, Eisman JA (2007) Risk of subsequent fracture after low-trauma fracture in men and women. JAMA 297:387–394PubMed CrossRef
    171.Rivadeneira F, Van Meurs JB, Kant J, Zillikens MC, Stolk L, Beck TJ et al (2006) Estrogen receptor beta (ESR2) polymorphisms in interaction with estrogen receptor alpha (ESR1) and insulin-like growth factor I (IGF1) variants influence the risk of fracture in postmenopausal women. J Bone Miner Res 21:1443–1456PubMed CrossRef
    172.Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Richards JB et al (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41:1199–1206PubMedCentral PubMed CrossRef
    173.Geusens P, van Geel T, van den Bergh J (2010) Can hip fracture prediction in women be estimated beyond bone mineral density measurement alone? Ther Adv Musculoskel Dis 2:63–77CrossRef
    174.Brot C, Jensen LB, Sorensen OH (1997) Bone mass and risk factors for bone loss in perimenopausal danish women. J Int Med 242:505–11CrossRef
    175.Danielson ME, Cauley JA, Baker CE, Newman A, Dorman J, Towers J et al (1999) Familial resemblance of bone mineral density (BMD) and calcaneal ultrasound attenuation: the BMD in mothers and daughters study. J Bone Miner Res 14:102–10PubMed CrossRef
    176.Grainge MJ, Coupland CA, Cliffe SJ, Chilvers CE, Hosking DJ (1999) Association between a family history of fractures and bone mineral density in early postmenopausal women. Bone 24:507–12PubMed CrossRef
    177.Seeman E, Tsalamandris C, Formica C, Hopper J, McKay J (1994) Reduced femoral neck bone density in the daughters of women with hip fracture: the role of low peak bone density in the pathogenesis of osteoporosis. J Bone Miner Res 9:739–43PubMed CrossRef
    178.Soroko SB, Barrett-Connor E, Edelstein SL et al (1994) Family history of osteoporosis and bone mineral density at the axial skeleton: the Rancho Bernardo study. J Bone Miner Res 9:761–9PubMed CrossRef
    179.Kanis JA, Johansson H, Oden A, Johnell O, De Laet C, Eisman JA, McCloskey EV, Mellstrom D, 3rd Melton LJ, Pols HA, Reeve J, Silman AJ, Tenenhouse A (2004) A family history of fracture and fracture risk: a meta-analysis. Bone 35:1029–37PubMed CrossRef
    180.Nelson HD, Nevitt MC, Scott JC, Stone KL, Cummings SR (1994) Smoking, alcohol, and neuromuscular and physical function of older women. Study of osteoporotic fractures research group. JAMA 21:1825–31CrossRef
    181.Egger P, Duggleby S, Hobbs R, Fall C, Cooper C (1996) Cigarette smoking and bone mineral density in the elderly. J Epidemiol Community Health 50:47–50PubMedCentral PubMed CrossRef
    182.Hollenbach KA, Barrett-Connor E, Edelstein SL, Holbrook T (1993) Cigarette smoking and bone mineral density in older men and women. Am J Public Health 83:1265–1270PubMedCentral PubMed CrossRef
    183.Hermann AP, Brot C, Gram J, Kolthoff N, Mosekilde L (2015) Premenopausal smoking and bone density in 2015 perimenopausal women. J Bone Miner Res 15:780–787CrossRef
    184.Kanis JA, Johnell O, Oden A, Johansson H, De Laet C et al (2005) Smoking and fracture risk: a meta-analysis. Osteoporos Int 16:155–62PubMed CrossRef
    185.Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214PubMed CrossRef
    186.De Nijs RN (2008) Glucocorticoid-induced osteoporosis: a review on pathophysiology and treatment options. Minerva Med 99:23–43PubMed
    187.Ribeiro D, Zawadynski S, Pittet LF, Chevalley T, Girardin E, Parvex P (2015) Effect of glucocorticoids on growth and bone mineral density in children with nephrotic syndrome. Eur J Pediatr 174:911–917PubMed CrossRef
    188.de Gregório LH, Lacativa PG, Melazzi AC, Russo LA (2006) Glucocorticoid-induced osteoporosis. Arq Bras Endocrinol Metabol 50:793–801PubMed CrossRef
    189.Tsampalieros A, Gupta P, Denburg MR, Shults J, Zemel BS, Mostoufi-Moab S, Wetzsteon RJ, Herskovitz RM, Whitehead KM, Leonard MB (2013) Glucocorticoid effects on changes in bone mineral density and cortical structure in childhood nephrotic syndrome. J Bone Miner Res 28:480–8PubMedCentral PubMed CrossRef
    190.Osteoporosis Canada. Medications that can cause bone loss, falls and/or fractures. http://​www.​osteoporosis.​ca/​osteoporosis-and-you/​secondary-osteoporosis/​medications-that-can-cause-bone-loss-falls-and-or-fractures/​
    191.Stanmore EK, Oldham J, Skelton DA, O’Neill T, Pilling M, Campbell AJ, Todd C. The Lancet, 381:S103.
    192.Smulders E, Schreven C, Weerdesteyn V, van den Hoogen FHJ, Laan R, Van Lankveld W (2009) Fall incidence and fall risk factors in people with rheumatoid arthritis. Ann Rheum Dis 68:1795–1796PubMed CrossRef
    193.Stanmore EK, Oldham J, Skelton DA, O’Neill T, Pilling M, Campbell AJ, Todd C (2013) Risk factors for falls in adults with rheumatoid arthritis: a prospective study. Arthritis Care Res (Hoboken) 65:1251–8CrossRef
    194.Cooper C, Coupland C, Mitchell M (1995) Rheumatoid arthritis, corticosteroid therapy and hip fracture. Ann Rheum Dis 54:49–52PubMedCentral PubMed CrossRef
    195.Kaz Kaz H, Johnson D, Kerry S, Chinappen U, Tweed K, Patel S (2004) Fall-related risk factors and osteoporosis in women with rheumatoid arthritis. Rheumatology 43:1267–1271PubMed CrossRef
    196.Deodhar AA, Woolf AD (1996) Bone mass measurement and bone metabolism in rheumatoid arthritis: a review. Br J Rheumatol 35:309–22PubMed CrossRef
    197.Lodder M, de Jong Z, Kostense P et al (2004) Bone mineral density in patients with rheumatoid arthritis: relation between disease severity and low bone mineral density. Ann Rheum Dis 63:1576–1580PubMedCentral PubMed CrossRef
    198.Als OS, Gotfredsen A, Christiansen C (1985) The effect of glucocorticoids on bone mass in rheumatoid arthritis patients. Influence Menopausal State Arthritis Rheumatism 28:369–375PubMed CrossRef
    199.Goldring S, Gravallese E (2004) Adverse effects of rheumatoid arthritis on bone remodeling. Arthritis Res Therapy 6(Suppl 3):38CrossRef
    200.Walsh NC, Gravallese EM (2010) Bone remodeling in rheumatic disease: a question of balance. Immunol Rev 233:301–12PubMed CrossRef
    201.Hingson R, Howland J (1987) Alcohol as a risk factor for injury or death resulting from accidental falls: a review of the literature. J Stud Alcohol 48:212–219PubMed CrossRef
    202.Mukamal KJ, Mittleman MA, Longstreth WT, Newman AB, Fried LP, Siscovick DS (2004) Self-reported alcohol consumption and falls in older adults: cross-sectional and longitudinal analyses of the cardiovascular health study. J Am Geriatr Soc 52:1174–9PubMed CrossRef
    203.Kool B, Ameratunga S, Jackson R (2009) The role of alcohol in unintentional falls among young and middle-aged adults: a systematic review of epidemiological studies. Inj Prev 15:341–7PubMed CrossRef
    204.Ganry O, Baudoin C, Fardellone P (2000) Effect of alcohol intake on bone mineral density in elderly women: The EPIDOS study. Epidémiologie de l’Ostéoporose. Am J Epidemiol 151:773–80PubMed CrossRef
    205.McLernon DJ, Powell JJ, Jugdaohsingh R, Macdonald HM (2012) Do lifestyle choices explain the effect of alcohol on bone mineral density in women around menopause? Am J Clin Nutr 95:1261–9PubMed CrossRef
    206.Berg KM, Kunins HV, Jackson JL et al (2008) Association between alcohol consumption and both osteoporotic fracture and bone density. Am J Med 121:406–418PubMedCentral PubMed CrossRef
    207.Sampson HW (1998) Alcohol’s harmful effects on bone. Alcohol Health Res World 22:190–194PubMed
    208.Kim MJ, Shim MS, Kim MK, Lee Y, Shin YG, Chung CH, Kwon SO (2003) Effect of chronic alcohol ingestion on bone mineral density in males without liver cirrhosis. Korean J Intern Med 18:174–80PubMedCentral PubMed CrossRef
    209.Kaptoge S, Beck TJ, Reeve J et al (2008) Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res 23:1892–904PubMedCentral PubMed CrossRef
    210.Leslie WD, Pahlavan PS et al (2009) Prediction of hip and other osteoporotic fractures from hip geometry in a large clinical cohort. Osteoporos Int 20:1767–74PubMed CrossRef
    211.Cranney A, Jamal SA, Tsang JF, Josse GR, Leslie WD (2007) Low bone mineral density and fracture burden in postmenopausal women. CMAJ 177:575–80PubMedCentral PubMed CrossRef
    212.Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–9PubMedCentral PubMed CrossRef
    213.Stone KL, Seeley DG, Lui LY et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res 18:1947–54PubMed CrossRef
    214.Conley D, Schultz AA, Selvin R (1999) The challenge of predicting patients at risk for falling: development of the conley scale. Medsurg Nurs 8:348–54PubMed
    215.Bouxsein ML (2006) Biomechanics of osteoporotic fractures. Clin Rev Bone Mineral Metabolism 4:143–154CrossRef
    216.Bessho M, Ohnishi I, Matsumoto T, Ohashi S, Matsuyama J, Tobita K, Kaneko M, Nakamura K (2009) Prediction of proximal femur strength using a CT-based nonlinear finite element method: differences in predicted fracture load and site with changing load and boundary conditions. Bone 45:226–231PubMed CrossRef
    217.MacNeil JA, Boyd SK (2008) Bone strength at the distal radius can be estimated from high resolution peripheral quantitative computed tomography and the finite element method. Bone 42:1203–1213PubMed CrossRef
    218.Le Bras A, Kolta S, Soubrane P, Skalli W, Roux C, Mitton D (2006) Assessment of femoral neck strength by 3-dimensional x-ray absorptiometry. J Clin Densitom 9:425–30PubMed CrossRef
    219.Nishiyama KK, Gilchrist S, Guy P, Cripton P, Boyd SK (2013) Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration. J Biomech 46:1231–1236PubMed CrossRef
    220.Keyak JH, Kaneko TS et al (2005) Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res 437:219–228PubMed CrossRef
    221.Bessho M, Ohnishi I et al (2007) Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech 40:1745–1753PubMed CrossRef
    222.Mirzaei M, Zeinali A, Razmjoo A, Nazemi M (2009) On prediction of the strength levels and failure patterns of human vertebrae using quantitative computed tomography (QCT)-based finite element method. J Biomech 42:1584–1591PubMed CrossRef
    223.Matsumoto T, Ohnishi I, Bessho M, Imai K, Ohashi S, Nakamura K (2009) Prediction of vertebral strength under loading conditions occurring in activities of daily living using a computed tomography-based nonlinear finite element method. Spine (Phila Pa 1976) 34:1464–9CrossRef
    224.Cody DD, Gross GJ, Hou FJ et al (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32:1013–1020PubMed CrossRef
    225.Dall’Ara E, Pahr D, Varga P, Kainberger F, Zysset P (2012) QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA. Osteoporos Int 23:563–572PubMed CrossRef
    226.Engelke K, Libanati C, Fuerst T, Zysset P, Genant HK (2013) Advanced CT based in vivo methods for the assessment of bone density, structure, and strength. Curr Osteoporos Rep:246–255
    227.Carpenter RD (2013) Finite element analysis of the hip and spine based on quantitative computed tomography. Curr Osteoporos Rep, pages 156–62
    228.Zysset P, Dall’Ara E, Varga P, Pahr DH (2013) Finite element analysis for prediction of bone strength. BoneKEy Rep 2:1–9. doi:10.​1038/​bonekey.​2013.​12 CrossRef
    229.Dall’Ara E, Luisier B, Schmidt R, Kainberger F, Zysset P, Pahr D (2013) A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone 52:27–38PubMed CrossRef
    230.Yang L, Peel N, Clowes JA, McCloskey EV, Eastell R (2009) Use of DXA-based structural engineering models of the proximal femur to discriminate hip fracture. J Bone Miner Res 24:33–42PubMedCentral PubMed CrossRef
    231.Yang L, Palermo L, Black DM, Eastell R (2014) Prediction of incident hip fracture with the estimated femoral strength by finite element analysis of DXA scans in the study of osteoporotic fractures. 29:2594–2600
    232.Boskey AL, Coleman R (2010) Aging and bone. J Dent Res 89:1333–1348PubMedCentral PubMed CrossRef
    233.Boskey AL (2013) Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BoneKey Reports, 447: doi:10.​1038/​bonekey.​2013.​181
    234.Long Y, Leslie W, Luo Y (2015) Study of DXA-derived lateral-medial cortical bone thickness in assessing hip fracture risk. Bone Reports 2:44–51CrossRef
  • 作者单位:Y. Luo (1) (2) (3)

    1. Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
    2. Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada
    3. Department of Anatomy, South Medical University, Guangzhou, China
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Orthopedics
    Gynecology
    Endocrinology
    Rheumatology
  • 出版者:Springer London
  • ISSN:1433-2965
文摘
Osteoporotic fracture has been found associated with many clinical risk factors, and the associations have been explored dominantly by evidence-based and case-control approaches. The major challenges emerging from the studies are the large number of the risk factors, the difficulty in quantification, the incomplete list, and the interdependence of the risk factors. A biomechanical sorting of the risk factors may shed lights on resolving the above issues. Based on the definition of load-strength ratio (LSR), we first identified the four biomechanical variables determining fracture risk, i.e., the risk of fall, impact force, bone quality, and bone geometry. Then, we explored the links between the FRAX clinical risk factors and the biomechanical variables by looking for evidences in the literature. To accurately assess fracture risk, none of the four biomechanical variables can be ignored and their values must be subject-specific. A clinical risk factor contributes to osteoporotic fracture by affecting one or more of the biomechanical variables. A biomechanical variable represents the integral effect from all the clinical risk factors linked to the variable. The clinical risk factors in FRAX mostly stand for bone quality. The other three biomechanical variables are not adequately represented by the clinical risk factors. From the biomechanical viewpoint, most clinical risk factors are interdependent to each other as they affect the same biomechanical variable(s). As biomechanical variables must be expressed in numbers before their use in calculating LSR, the numerical value of a biomechanical variable can be used as a gauge of the linked clinical risk factors to measure their integral effect on fracture risk, which may be more efficient than to study each individual risk factor. Keywords Biomechanical variables Clinical-biomechanical links Clinical risk factors Osteoporosis Hip fracture

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700