QCT of the proximal femur—which parameters should be measured to discriminate hip fracture?
详细信息    查看全文
  • 作者:O. Museyko ; V. Bousson ; J. Adams ; J. -D. Laredo ; K. Engelke
  • 关键词:BMD ; Cortical bone ; Femur neck geometry ; Hip fracture discrimination ; QCT
  • 刊名:Osteoporosis International
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:27
  • 期:3
  • 页码:1137-1147
  • 全文大小:701 KB
  • 参考文献:1.Bousson VD, Adams J, Engelke K, Aout M, Cohen-Solal M, Bergot C, Haguenauer D, Goldberg D, Champion K, Aksouh R, Vicaut E, Laredo JD (2011) In vivo discrimination of hip fracture with quantitative computed tomography: results from the prospective European Femur Fracture Study (EFFECT). J Bone Min Res: Off J Am Soc Bone Min Res 26(4):881–893. doi:10.​1002/​jbmr.​270 CrossRef
    2.Engelke K, Libanati C, Fuerst T, Zysset P, Genant HK (2013) Advanced CT based in vivo methods for the assessment of bone density, structure, and strength. Curr Osteoporos Rep 11(3):246–255. doi:10.​1007/​s11914-013-0147-2 CrossRef PubMed
    3.Link TM, Lang TF (2014) Axial QCT: clinical applications and new developments. J Clin Densitom: Off J Int Soc Clin Densitom 17(4):438–448. doi:10.​1016/​j.​jocd.​2014.​04.​119 CrossRef
    4.Kang Y, Engelke K, Kalender WA (2003) A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans Med Imaging 22(5):586–598CrossRef PubMed
    5.Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21(1):101–108CrossRef PubMed
    6.Prevrhal S, Engelke K, Kalender WA (1999) Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol 44(3):751–764CrossRef PubMed
    7.Treece GM, Gee AH (2015) Independent measurement of femoral cortical thickness and cortical bone density using clinical CT. Med Image Anal 20(1):249–264. doi:10.​1016/​j.​media.​2014.​11.​012 CrossRef PubMed
    8.Prevrhal S, Fox JC, Shepherd JA, Genant HK (2003) Accuracy of CT-based thickness measurement of thin structures: modeling of limited spatial resolution in all three dimensions. Med Phys 30(1):1–8CrossRef PubMed
    9.Kang Y, Engelke K, Fuchs C, Kalender WA (2005) An anatomic coordinate system of the femoral neck for highly reproducible BMD measurements using 3D QCT. Comput Med Imaging Graph 29(7):533–541CrossRef PubMed
    10.Carpenter RD, Sigurdsson S, Zhao S, Lu Y, Eiriksdottir G, Sigurdsson G, Jonsson BY, Prevrhal S, Harris TB, Siggeirsdottir K, Guethnason V, Lang TF (2011) Effects of age and sex on the strength and cortical thickness of the femoral neck. Bone 48(4):741–747. doi:10.​1016/​j.​bone.​2010.​12.​004 PubMedCentral CrossRef PubMed
    11.DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845CrossRef PubMed
    12.Cheng X, Li J, Lu Y, Keyak J, Lang T (2007) Proximal femoral density and geometry measurements by quantitative computed tomography: association with hip fracture. Bone 40(1):169–174. doi:10.​1016/​j.​bone.​2006.​06.​018 CrossRef PubMed
    13.Schwarz G (1978) Estimation of the dimension of a model. Ann Stat 6:461–465CrossRef
    14.Baudoin C, Fardellone P, Sebert JL (1993) Effect of sex and age on the ratio of cervical to trochanteric hip fracture. A meta-analysis of 16 reports on 36,451 cases. Acta Orthop Scand 64(6):647–653CrossRef PubMed
    15.Kannus P, Parkkari J, Sievanen H, Heinonen A, Vuori I, Jarvinen M (1996) Epidemiology of hip fractures. Bone 18(1 Suppl):57S–63SCrossRef PubMed
    16.Lonnroos E, Kautiainen H, Karppi P, Huusko T, Hartikainen S, Kiviranta I, Sulkava R (2006) Increased incidence of hip fractures. A population-based study in Finland. Bone 39(3):623–627. doi:10.​1016/​j.​bone.​2006.​03.​001 CrossRef PubMed
    17.Morosano M, Masoni A, Sanchez A (2005) Incidence of hip fractures in the city of Rosario, Argentina. Osteoporos Int 16(11):1339–1344. doi:10.​1007/​s00198-005-1839-y CrossRef PubMed
    18.Black DM, Bouxsein ML, Marshall LM, Cummings SR, Lang TF, Cauley JA, Ensrud KE, Nielson CM, Orwoll ES (2008) Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J Bone Miner Res 23(8):1326–1333PubMedCentral CrossRef PubMed
    19.Poole KE, Treece GM, Mayhew PM, Vaculik J, Dungl P, Horak M, Stepan JJ, Gee AH (2012) Cortical thickness mapping to identify focal osteoporosis in patients with hip fracture. PLoS One 7(6), e38466. doi:10.​1371/​journal.​pone.​0038466 PubMedCentral CrossRef PubMed
    20.Johannesdottir F, Poole KE, Reeve J, Siggeirsdottir K, Aspelund T, Mogensen B, Jonsson BY, Sigurdsson S, Harris TB, Gudnason VG, Sigurdsson G (2011) Distribution of cortical bone in the femoral neck and hip fracture: a prospective case-control analysis of 143 incident hip fractures; the AGES-REYKJAVIK study. Bone 48(6):1268–1276. doi:10.​1016/​j.​bone.​2011.​03.​776 PubMedCentral CrossRef PubMed
    21.Prevrhal S, Heitz M, Lowet G, Engelke K, Kalender WA (1997) Quantitative CT am proximalen Femur: In vitro-Studie. Z Med Phys 7:170–177CrossRef
    22.Yang L, Burton AC, Bradburn M, Nielson CM, Orwoll ES, Eastell R (2012) Distribution of bone density in the proximal femur and its association with hip fracture risk in older men: the MrOS study. J Bone Miner Res 27(11):2314–2324. doi:10.​1002/​jbmr.​1693 PubMedCentral CrossRef PubMed
    23.Yang L, Udall WJ, McCloskey EV, Eastell R (2014) Distribution of bone density and cortical thickness in the proximal femur and their association with hip fracture in postmenopausal women: a quantitative computed tomography study. Osteoporos Int 25(1):251–263. doi:10.​1007/​s00198-013-2401-y CrossRef PubMed
    24.Peterson LE, Coleman MA (2008) Machine learning-based receiver operating characteristic (ROC) curves for crisp and fuzzy classification of DNA microarrays in cancer research. Int J Approx Reason: Off Publ N Am Fuzzy Inf Proc Soc 47(1):17–36. doi:10.​1016/​j.​ijar.​2007.​03.​006 CrossRef
  • 作者单位:O. Museyko (1)
    V. Bousson (2)
    J. Adams (3)
    J. -D. Laredo (2)
    K. Engelke (1)

    1. Institute of Medical Physics (IMP), University of Erlangen, Henkestr. 91, 91052, Erlangen, Germany
    2. Service de Radiologie OstéoArticulaire, Hôpital Lariboisière, Paris, France
    3. Clinical Radiology, The Royal Infirmary, University of Manchester, Manchester, UK
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Orthopedics
    Gynecology
    Endocrinology
    Rheumatology
  • 出版者:Springer London
  • ISSN:1433-2965
文摘
Summary For quantitative computed tomography (QCT), most relevant variables to discriminate hip fractures were determined. A multivariate analysis showed that trabecular bone mineral density (BMD) of the trochanter with “cortical” thickness of the neck provided better fracture discrimination than total hip integral BMD. A slice-by-slice analysis of the neck or the inclusion of strength-based parameters did not improve fracture discrimination.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700