Investigating the origin and geochemical behaviour of toxic elements within the waste dumps using statistical analyses: a case study at waste dumps of Sarcheshmeh copper mine, SE of Iran
详细信息    查看全文
  • 作者:Saeed Yousefi (1)
    Faramarz Doulati Ardejani (2)
    Mansour Ziaii (3)
    Arezoo Abedi (4)
    Esmat Esmaeil Zadeh (5)

    1. Faculty of Mining
    ; Petroleum and Geophysics ; Shahrood University ; Shahrood ; Iran
    2. Faculty of Mining
    ; Petroleum and Geophysics ; Shahrood University ; Shahrood ; Iran
    3. Faculty of Mining
    ; Petroleum and Geophysics ; Shahrood University ; Shahrood ; Iran
    4. Faculty of Mining
    ; Petroleum and Geophysics ; Shahrood University ; Shahrood ; Iran
    5. Sarcheshmeh Copper Complex
    ; Research and Development Centre ; Rafsanjan ; Iran
  • 关键词:Acid mine drainage ; Bioavailability of toxic elements ; Principle component analysis ; Hierarchical cluster analysis ; Correlation analysis ; Paste pH experiment
  • 刊名:Environmental Earth Sciences
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:73
  • 期:4
  • 页码:1555-1572
  • 全文大小:958 KB
  • 参考文献:1. Adriano DC (2001) Trace elements in terrestrial environments. Springer, Berlin CrossRef
    2. Aftabi A, Atapour H (1997) Geochemical and petrological characteristics of shoshonitic and potassic calcalkaline magmatism at Sarcheshmeh and Dehsiahan porphyry copper deposits, Kerman, Iran. Res Bull Isfahan Univ 9:127鈥?56 (in Persian)
    3. Ainsworth CC, Girvin DC, Zachara JM, Smith SC (1989) Chromate adsorption on goethite: effects of aluminium substitution. Soil Sci Soc Am J 53:411鈥?18 CrossRef
    4. Akbal F, G眉rel L, Bahad谋r T, G眉ler 陌, Bakan G, B眉y眉kg眉ng枚r H (2011) Water and sediment quality assessment in the mid-Black Sea coast of Turkey using multivariate statistical techniques. Environ Earth Sci. doi:10.1007/s12665-011-0963-6
    5. Akbar Jan A, Ishaq M, Ihsanullah I, Asim SM (2010) Multivariate statistical analysis of heavy metals pollution in industrial area and its comparison with relatively less polluted area: a case study from the city of Peshawar and district Dir Lower. J Hazard Mater. doi:10.1016/j.jhazmat.2009.11.073
    6. Akin BS, At谋c谋 T, Katircioglu H, Keskin F (2011) Investigation of water quality on Gokcekaya dam lake using multivariate statistical analysis, in Eskisehir, Turkey. Environ Earth Sci 63:1251鈥?261 CrossRef
    7. Alizadegan, A (2010) Geochemical and mineralogical characteristics of the waste dump, from the economic and environmental aspect in Sarcheshmeh porphyry copper mine, Kerman, Iran. Dissertation, Tehran University (in Persian)
    8. American Society for Testing and Materials (ASTM) (1986) Standard test method for forms of sulphur in coal (D 2492-84). In: Annual book of ASTM standards: gaseous fuels; coal and coke, Sec 5, vol 5.05. ASTM International, West Conshohocken, United States, pp 354鈥?58
    9. Atapour H, Aftabi A (2007) The geochemistry of gossans associated with Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: implications for exploration and the environment. J Geoch Explor 93:47鈥?5 CrossRef
    10. Bartlett RJ (1991) Chromium cycling in soils and water: links, gaps, and methods. Environ Health Persp 92:17鈥?4 CrossRef
    11. Blowes DW, Jambor JL (eds) (1994) Environmental geochemistry of sulphide mine wastes. Short course handbook, vol 22. Mineralogical Association of Canada, Ontario, Quebec
    12. Boomeri M, Nakashima K, Lentz DR (2010) The Sarcheshmeh porphyry copper deposit, Kerman, Iran: a mineralogical analysis of the igneous rocks and alteration zones including halogen element systematic related to Cu mineralization processes. Ore Geol Rev 38:367鈥?81 CrossRef
    13. Boyle RW (1974) The use of major elemental ratios in detailed geochemical prospecting utilizing primary halos. J Geoch Explor 3:345鈥?69 CrossRef
    14. Bu H, Tan X, Li S, Zhang Q (2010) Water quality assessment of the Jinshui River (China) using multivariate statistical techniques. Environ Earth Sci 60:1631鈥?639 CrossRef
    15. Candeias C, Ferreira da Silva E, Salgueiro AR, Pereira HG, Reis AP, Patinha C, Matos JX, Avila PH (2011) The use of multivariate statistical analysis of geochemical data for assessing the spatial distribution of soil contamination by potentially toxic elements in the Aljustrel mining area (Iberian Pyrite Belt, Portugal). Environ Earth Sci 62:1461鈥?479 CrossRef
    16. Carlsson E, Thunberg J, Ohlander B, Holmstrom H (2002) Sequential extraction of sulphide-rich tailings remediated by the application of till cover, Kristineberg mine, northern Sweden. Sci Total Environ 299:207鈥?26 CrossRef
    17. Cavallaro N, McBride MB (1978) Copper and cadmium adsorption characteristics of selected acid and calcareous soils. Soil Sci Soc Am J 42:550鈥?56 CrossRef
    18. Chaparro MAE, Chaparro MAE, Rajkumar P, Ramasamy V, Sinito AM (2011) Magnetic parameters, trace elements, and multivariate statistical studies of river sediments from southeastern India: a case study from the Vellar River. Environ Earth Sci 63:297鈥?10 CrossRef
    19. Chaplygin IV, Mozgova N, Mokhov AV, Koporulina V, Bernhardt H, Bryzgalov I (2007) Minerals of the system ZnS鈥揅dS from fumaroles of the Kudriavy volcano, Iturup Island, Kuriles, Russia. Can Mineral 45(4):709鈥?22 CrossRef
    20. Chester R, Hughes MJ (1967) A chemical technique for the speciation of ferromanganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. Chem Geol 2:249鈥?63 CrossRef
    21. Covelo EF, Vega FA, Andrade ML (2007) Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils II. Soil ranking and influence of soil characteristics. J Hazard Mater 147:862鈥?70 CrossRef
    22. Danielsson A, Cato I, Carman R (1999) Spatial clustering of metals in the sediments of the Skagerrak/Kattegat. Appl Geochem 14:689鈥?06 CrossRef
    23. Davis JA (1984) Complexation of trace metals by adsorbed natural organic matter. Geochim Cosmochim Ac 48:679鈥?91 CrossRef
    24. Davis JA, Leckie JO (1980) Surface ionization and complexation of trace metals by adsorbed natural organic matter. Geochim Cosmochim Acta 48:679鈥?91 CrossRef
    25. DelValls TA, Forja JM, Gomez-Parra A (1998) The use of multivariate analysis to link sediment contamination and toxicity data to establish sediment quality guidelines: an example in the Gulf of Cadiz (Espana). Cienc Mar 24(2):127鈥?54
    26. Dercz G, Oleszak D, Prusik K, Paja KL (2008) Rietveld-based quantitative analysis of multiphase powders with nanocrystalline Ni Al and Fe Al phases. Rev Adv Mater Sci 18:764鈥?68
    27. Doulati Ardejani F, Jodeiri Shokri B, Bagheri M, Soleimani E (2010) Investigation of pyrite oxidation and acid mine drainage characterization associated with Razi active coal mine and coal washing waste dumps in the Azad shahr-Ramian region, northeast Iran. Environ Earth Sci 61(8):1547鈥?560 CrossRef
    28. Egozy Y (1980) Adsorption of cadmium and cobalt montmorillonite as a function of solution composition. Clays Clay Miner 28(4):311鈥?18 CrossRef
    29. Emmerson RHC, O鈥橰eilly-Wiese SB, Macleod CL, Lester JN (1997) A multivariate assessment of metal distribution in inter-tidal sediments of the Blackwater Estuary, UK. Mar Pollut Bull 34:960鈥?68 CrossRef
    30. Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313鈥?24 CrossRef
    31. Farnham IM, Johannesson KH, Singh AK, Hodge VF, Stetzenbach KJ (2003) Factor analytical approaches for evaluating groundwater trace element chemistry data. Anal Chim Acta 490:123鈥?38 CrossRef
    32. Fernandez-Rubio R, Fernandez Lorca S, Arlegui JE (eds) (1986) Abandono de Minas. Impacto Hidrologico IGME, Madrid
    33. Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monit 4:823鈥?57 CrossRef
    34. Franco-Ur铆a A, L贸pez-Mateo C, Roca E, Fern谩ndez-Marcos ML (2009) Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J Hazard Mater 165(1):1008鈥?015 CrossRef
    35. Gallego JLR, Ordonez A, Loredo J (2002) Investigation of trace element sources from an industrialized area (Aviles, northern Spain) using multivariate statistical methods. Environ Int 27:589鈥?96 CrossRef
    36. Goldberg S, Forster HS, Godfrey CL (1996) Molybdenum adsorption on oxides, clay minerals and soils. Soil Sci Soc Am J 60(2):425鈥?32 CrossRef
    37. Google Earth (2013). http://www.google.earth.com
    38. Grande JA, Borrego J, Morales JA, De La Torre ML (2003) A description of how metal pollution occurs in the Tinto-Odiel rias (Huelva-Spain) through the application of cluster analysis. Marin Pollut Bull 46:475鈥?80 CrossRef
    39. Hammarstrom JM, Seal RR, Meier AL, Kornfeld JM (2005) Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chem Geol 215:407鈥?31 CrossRef
    40. Hassani Pak AA, Sharafaddin M (2005) Exploration data analysis. Tehran University, Iran (in Persian)
    41. Hem JD (1992) Study and interpretation of the chemical characteristics of natural water. USGS Water Supply Paper 2254. http://pubs.water.usgs.gov/wsp2254
    42. Hickey MG, Kittrick JA (1984) Chemical partitioning of cadmium, copper, nickel, and zinc in soils and sediments containing high levels of heavy metals. J Environ Qual 13:372鈥?76 CrossRef
    43. Hlavay J, Prohaska T, Weisz M, Wenzel WW, Stingeder GJ (2004) Determination of trace elements bound to soils and sediment fractions. Int Union Pure App Chem 76:415鈥?42
    44. Huang W, Campredon R, Abrao JJ, Bernat M, Latouche C (1994) Variation of heavy metals in recent sediments from Piratininga Lagoon (Brazil): interpretation of geochemical data with the aid of multivariate analysis. Environ Geol 23:241鈥?47
    45. Jambor IL (2003) Mine waste mineralogy and mineralogical perspectives on acid鈥揵ase accounting. In: Jambor JL, Blowes DW, Ritchie AIM (eds) Environmental aspects of mine wastes: short course series, vol 31. Mineralogical Association of Canada, Qu茅bec, pp 117鈥?45
    46. Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141鈥?51 CrossRef
    47. Khorasanipour M, Moore F, Naseh R (2011a) Lime treatment of mine drainage at the Sarcheshmeh porphyry copper mine, Iran. Mine Water Environ 30:216鈥?30 CrossRef
    48. Khorasanipour M, Tangestani MH, Naseh R, Hajmohammadi H (2011b) Hydrochemistry, mineralogy and chemical fractionation of mine and processing wastes associated with porphyry copper mines: a case study from the Sarcheshmeh mine, SE Iran. App Geochem 26:714鈥?30 CrossRef
    49. Khorasanipour M, Tangestani MH, Naseh R (2011c) Application of multivariate statistical methods to indicate the origin and geochemical behaviour of potentially hazardous elements in sediment around the Sarcheshmeh copper mine, SE Iran. Environ Earth Sci 66(2):589鈥?05 CrossRef
    50. Khorasanipour M, Tangestani MH, Naseh R, Hajmohammadi H (2012) Chemical fractionation and contamination intensity of trace elements in stream sediments at the Sarcheshmeh porphyry copper mine, SE Iran. Mine Water Environ 31:199鈥?13 CrossRef
    51. Kinniburgh DG, Van Riemsdijk WH, Koopal LK, Borkovec M, Benedetti MF, Avena MJ (1999) Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloid Surface A 151(1鈥?):147鈥?66 CrossRef
    52. Koppelman MH, Emerson AB, Dillard JG (1980) Adsorbed Cr(III) on chlorite, illite, and kaolinite; an X-ray photoelectron spectroscopic study. Clays Clay Miner 28(2):119鈥?24 CrossRef
    53. Kuo S, Heilman PE, Baker AS (1983) Distribution and forms of copper, zinc, cadmium, iron, and manganese in soils near a copper smelter. Soil Sci 135:101鈥?09 CrossRef
    54. Leinz RW, Sutley SJ, Desborough, Briggs PH (2000) An investigation of the partitioning of metals in mine wastes using sequential extractions. In: Proceeding from 5th international conference on acid rock drainage. Society for Mining, Metallurgy, and Exploration, Littleton, Colorado, pp 343鈥?56
    55. Loska K, Wiechu艂a D (2003) Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51:723鈥?33 CrossRef
    56. Lottermoser BG (2003) Mine waste: characterization, treatment and environmental impacts. Springer, Berlin CrossRef
    57. Manuela Motta M, Miranda CF (1989) Molybdate adsorption on kaolinite, montmorillonite, and illite: constant capacitance modelling. Soil Sci Soc Am J 53(2):380鈥?85 CrossRef
    58. Mart铆nez J, Llamas JF, De Miguel E, Rey Hidalgo MC (2008) Soil contamination from urban and industrial activity: example of the mining district of Linares (southern Spain). Environ Geol 54(4):669鈥?77 CrossRef
    59. Mason B, Moore CB (1982) Principle of geochemistry, 4th edn. Wiley, New York
    60. Moncur MC, Ptacek CJ, Blowes DW, Jambor JL (2005) Release, transport and attenuation of metals from an old tailings impoundment. Appl Geochem 20(3):639鈥?59 CrossRef
    61. Nickel EH (1979) Gossan mineralogy viewed in the context of solution chemistry. In: Glover JE, Smith RE (eds) Pathfinder and multi element geochemistry in mineral exploration. Geology Department and Extension Service, University of Western, Australia
    62. Nordstrom DK (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In: Kittrick JA, Fanning DS, Hossner LR (eds) Acid sulphate weathering. Soil Science Society of America Inc, Madison, pp 37鈥?6
    63. Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waste. In: Plumlee GS, Logsdon MJ (eds) Reviews in economic geology, the environmental geochemistry of ore deposits. Part A: processes, techniques, and health issues. Society of Economic Geologists, Littleton, pp 33鈥?60
    64. Peigneur P, Maes A, Cremers A (1975) Heterogeneity of charge density distribution in montmorillonite as inferred from cobalt adsorption. Clays Clay Miner 23:71鈥?5 CrossRef
    65. P茅rez-L贸pez R, 脕lvarez-Valero AM, Nieto JM, S谩ez R, Matos JX (2008) Use of sequential extraction procedure for assessing the environmental impact at regional scale of the S茫o Domingos Mine (Iberian Pyrite Belt). Appl Geochem 23(12):3452鈥?463 CrossRef
    66. Phelan PJ, Mattigod SV (1984) Adsorption desorption of molybdate anion (MoO4 2鈭?/sup>) by sodium, saturated kaolinite. Clays Clay Miner 32(1):45鈥?8 CrossRef
    67. Quevauviller P, Rauret G, Muntau H, Ure AM, Rubio R, Lopez Sanchez JF, Fiedler HD, Griepink B (1994) Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments. Fresenius J Anal Chem 349:808鈥?14 CrossRef
    68. Rietveld HM (1993) The Rietveld method. Oxford University Press, London
    69. Rieuwerts J, Thornton I, Farago M, Ashmore M (1998a) Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem Speciat Bioavail 10(2):61鈥?5 CrossRef
    70. Rieuwerts J, Thornton I, Farago M, Ashmore M (1998b) Quantifying the influence of soil properties on the solubility of metals by predictive modelling of secondary data. Chem Speciat Bioavail 10(3):83鈥?4 CrossRef
    71. Robinson GD (1981) Adsorption of Cu, Zn and Pb near sulphide deposits by hydrous manganese-Iron oxide coatings on stream alluvium. Chem Geol 3(4):65鈥?9 CrossRef
    72. Romero A, Gonz谩lez I, Gal谩n E (2006) Estimation of potential pollution of waste mining dumps at Pena del Hierro (Pyrite Belt, SW Spain) as a base for future mitigation actions. Appl Geochem 21(7):1093鈥?108 CrossRef
    73. Sager M (1992) Chemical speciation and environmental mobility of heavy metals in sediments. In: Stoeppler M (ed) Hazardous metals in the environment. Elsevier Science Publication, Amsterdam, pp 133鈥?74 CrossRef
    74. Singh D, McLaren RG, Cameron KC (2006) Zinc sorption鈥揹esorption by soils: effect of concentration and length of contact period. Geoderma 137:117鈥?25 CrossRef
    75. Smith KS (1999) Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits, reviews in economic geology, vol 6A. Society of Economic Geologists, Washington, pp 161鈥?82
    76. Smith IC, Carson BL (1981) Trace metals in the environment, Cobalt, vol 6. Ann Arbor Science Publication, Michigan
    77. Soares HMVM, Boaventura RAR, Machado AASC, Esteves da Silva JCG (1999) Sediments as monitors of heavy metal contamination in the Ave river basin (Portugal): multivariate analysis of data. Environ Pollut 105:311鈥?23 CrossRef
    78. Soylak M, T眉rkoglu O (1999) Trace metal accumulation caused by traffic in an agricultural soil near a motorway in Kayseri, Turkey. J Trace Microprobe Tech 17(2):209鈥?17
    79. Spanos N, Lycourghiotis A (1995) Code position of Mo (VI) Species and Ni2+ Ions on the 纬-Alumina Surface: mechanistic Model. J Colloid Interface Sci 171(2):306鈥?18 CrossRef
    80. Staniszewski A, Pazdro K, Beldowski J, Leipe T, Emeis KC, Pempkowiak J (2000) Temporal and spatial changes of cadmium in the near-bottom suspended matter of the Pomeranian Bay-Arkona Deep system. Oceanologia 42(4):483鈥?91
    81. Sundby B, Martinez P, Gobeil C (2004) Comparative geochemistry of cadmium, rhenium, uranium, and molybdenum in continental margin sediments. Geochim Cosmochim Acta 68(11):2485鈥?493 CrossRef
    82. Tessier A, Campbell PG, Bisson M (1979) Sequential extraction procedures for the specification of particulate trace metals. J Anal Chem 5:844鈥?55 CrossRef
    83. Tessier A, Campbell PGC, Bisson M (1980) Trace metal speciation in the Yamaoka and St. Francois Rivers (Quebec). Can J Earth Sci 17:90鈥?05 CrossRef
    84. Tessier A, Carignan R, Dubbreuil B, Rapin F (1989) Partitioning of zinc between the water column and the toxic sediments in lakes. Geochim Cosmochim Acta 53(7):1511鈥?522 CrossRef
    85. Thornber MR (1985) Supergene alteration of sulphides distribution of elements during gossan forming process. Chem Geol 53:279鈥?01 CrossRef
    86. Thornber MR, Nickel EH (1983) Geochemistry of gossan formation. In: Wilford GE (ed) Regolith in Australia: genesis and economic significance, vol 27. Bureau of Mineral Resources Record, Munich, pp 130鈥?36
    87. Tumuklu A, Yalcin MG, Sonmez M (2007) Detection of heavy metal concentrations in soil caused by Nigde City garbage dump. Pol J Environ Stud 16(4):651
    88. Violante A, Huang PM, Gadd GM (eds) (2007) Biophysico-chemical processes of heavy metals and metalloids in soil environments. Wiley, Hoboken
    89. Wang H, Lu S (2011) Spatial distribution, source identification and affecting factors of heavy metals contamination in urban鈥攕uburban soils of Lishui city, China. Environ Earth Sci. doi:10.1007/s12665-011-1005
    90. Ward J (1963) Hierarchical clustering to optimize an objective function. J Am Stat Assoc 58:236鈥?44 CrossRef
    91. Waterman GC, Hamilton RL (1975) The Sarcheshmeh porphyry copper deposit. Econ Geol 70:568鈥?76 CrossRef
    92. Webster R (2001) Statistics to support soil research and their presentation. Eur J Soil Sci 52:331鈥?40 CrossRef
    93. Webster R, Oliver MA (2001) Geostatistics for environmental scientists. Wiley, Chichester
    94. Williams TM, Smith B (2000) Hydrochemical characterization of acute acid mine drainage at Iron Duke Mine Mazowe, Zimbabwe. Environ Geol 39:272鈥?78 CrossRef
    95. World Health Organization (WHO) (2006) Guideline for drinking water quality first addendum to third edition. WHO, Switzerland
    96. Zachara JM, Girvin DC, Schmidt RL, Resch CT (1987) Chromate adsorption on amorphous iron oxyhydroxide in presence of major ground water ions. Environ Sci Technol 21:589鈥?94 CrossRef
    97. Zasoski RJ, Burau RG (1988) Sorption and sorptive interaction of cadmium and zinc on hydrous manganese oxide. Soil Sci Soc Am J 52(1):81鈥?7 CrossRef
    98. Zhang C, McGrath D (2004) Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma 119:261鈥?75 CrossRef
    99. Zhang C, Wu L, Luo Y, Zhang H, Christie P (2008) Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: role of pollutant migration and soil physicochemical properties. Environ Poll 151(3):470鈥?76 CrossRef
    100. Zhou J, Ma D, Pan J, Nie W, Wu K (2008) Application of multivariate statistical approach to identify heavy metal sources in sediment and waters: a case study in Yangzhong, China. Environ Geol 54:373鈥?80 CrossRef
    101. Ziaii M, Pouyan AA, Ziaei M (2009) Neuro-fuzzy modelling in mining geochemistry: identification of geochemical anomalies. J Geochem Explor 100(1):25鈥?6 CrossRef
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
Knowledge of the possible origin and behaviour of toxic elements in waste dump systems plays a crucial role in evaluating the potential risks for environment in mining sites. Sequential extraction experiments are often used to investigate the origin and behaviour of toxic elements. However, these experiments are not common in waste dumps due to need of the large number of samples for considering the heterogeneity. Therefore, this paper attempts to determine the origin and behaviour of Cd, Cu, Cr, Mo, Pb and Zn in waste dump using statistical analyses. For the aim of this study, sixty samples were collected from two waste dumps at the Sarcheshmeh Copper mine in Kerman province of Iran. The samples were characterised via ICP, XRD, ASTM-D2492 and paste pH experiment. Principle component analysis (PCA), hierarchical cluster analysis (HCA) and correlation analysis (CA) were used to identify the relationship and interdependency amongst the concentrations of toxic elements and the exact mineral contents. For detailed investigation, the samples were classified according to the paste pH value and then correlation analysis (CA) was performed. The results in comparison with previous experimental investigations revealed that pyrite and aluminosilicate minerals were the main sources of contamination. It was also found that hydroxysulphate minerals, manganese and iron oxyhydroxides, muscovite and chlorite were the principal minerals which control the concentrations of toxic elements in the waste dumps of the Sarcheshmeh porphyry copper mine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700