Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO2) nanoparticles
详细信息    查看全文
  • 作者:Sijing Xiong (1)
    Saji George (2) (3)
    Haiyang Yu (1)
    Robert Damoiseaux (2)
    Bryan France (2)
    Kee Woei Ng (1)
    Joachim Say-Chye Loo (1)
  • 关键词:PLGA ; TiO2 ; Nanoparticles ; Cytotoxicity ; Nanotoxicity ; Protein adsorption
  • 刊名:Archives of Toxicology
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:87
  • 期:6
  • 页码:1075-1086
  • 全文大小:694KB
  • 参考文献:1. Brookes PS, Yoon YS, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol-Cell Physiol 287(4):C817–C833. doi:10.1152/ajpcell.00139.2004 CrossRef
    2. Cartiera MS, Johnson KM, Rajendran V, Caplan MJ, Saltzman WM (2009) The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials 30(14):2790-798 CrossRef
    3. Chorny M, Fishbein I, Danenberg HD, Golomb G (2002) Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics. J Controlled Release 83(3):389-00 CrossRef
    4. de Lima R, do Espirito Santo Pereira A, Porto R, Fraceto L (2011) Evaluation of cyto- and genotoxicity of poly(lactide-co-glycolide) nanoparticles. J Polym Environ 19(1):196-02
    5. Deng ZJ, Liang MT, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6(1):39-4. doi:10.1038/nnano.2010.250 CrossRef
    6. Ding T, Sun J, Zhang P (2009) Study on MCP-1 related to inflammation induced by biomaterials. Biomed Mater 4(3):035005
    7. Dong Y, Feng SS (2007) Poly(D, L-lactide-co-glycolide) (PLGA) nanoparticles prepared by high pressure homogenization for paclitaxel chemotherapy. Int J Pharm 342(1-):208-14. doi:10.1016/j.ijpharm.2007.04.031 CrossRef
    8. Duvvuri S, Janoria KG, Mitra AK (2005) Development of a novel formulation containing poly(d, l-lactide-co-glycolide) microspheres dispersed in PLGA-PEG-PLGA gel for sustained delivery of ganciclovir. J Controlled Release 108:282-93 CrossRef
    9. George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, Rosenauer A, Damoiseaux R, Bradley KA, M?dler L, Nel AE (2009) Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4(1):15-9. doi:10.1021/nn901503q CrossRef
    10. George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S, Wang X, Zhang H, France B, Schoenfeld D, Damoiseaux R, Liu R, Lin S, Bradley KA, Cohen Y, Nel AE (2011) Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5(3):1805-817. doi:10.1021/nn102734s CrossRef
    11. Gurr J-R, Wang ASS, Chen C-H, Jan K-Y (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213(1-):66-3 CrossRef
    12. Heng BC, Zhao X, Xiong S, Ng KW, Boey FY-C, Loo JS-C (2010a) Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food Chem Toxicol 48(6):1762-766 CrossRef
    13. Heng BC, Zhao X, Xiong S, Ng KW, Boey FYC, Loo JSC (2010b) Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format. Arch Toxicol 85(6):695-04. doi:10.1007/s00204-010-0608-7 CrossRef
    14. Horie M, Nishio K, Fujita K, Endoh S, Miyauchi A, Saito Y, Iwahashi H, Yamamoto K, Murayama H, Nakano H, Nanashima N, Niki E, Yoshida Y (2009) Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem Res Toxicol 22(3):543-53. doi:10.1021/tx800289z CrossRef
    15. Jang HD, Kim S-K, Kim S-J (2001) Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J Nanopart Res 3(2):141-47. doi:10.1023/a:1017948330363 CrossRef
    16. Kang JL, Moon C, Lee HS, Lee HW, Park EM, Kim HS, Castranova V (2008) Comparison of the biological activity between ultrafine and fine titanium dioxide particles in RAW 264.7 cells associated with oxidative stress. J Toxicol Environ Health Part A 71(8):478-85. doi:10.1080/15287390801906675 CrossRef
    17. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4346-352 CrossRef
    18. McCall MJ (2011) Environmental, health and safety issues nanoparticles in the real world. Nat Nanotechnol 6(10):613-14 CrossRef
    19. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622-27. doi:10.1126/science.1114397 CrossRef
    20. Ng KW, Khoo SPK, Heng BC, Setyawati MI, Tan EC, Zhao X, Xiong S, Fang W, Leong DT, Loo JSC (2011) The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials 32(32):8218-225 CrossRef
    21. Oberdorster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J (1992) Role of the alveolar macrophage in lung injury—studies with ultrafine particles. Environ Health Perspect 97:193-99. doi:10.2307/3431353
    22. Oberd?rster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H, Group ArftIRFRSINTSW (2005a) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2(1):8 CrossRef
    23. Oberd?rster G, Oberd?rster E, Oberd?rster J (2005b) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823-39. doi:10.1289/ehp.7339 CrossRef
    24. Palomaki J, Karisola P, Pylkkanen L, Savolainen K, Alenius H (2009) Engineered nanornaterials cause cytotoxicity and activation on mouse antigen presenting cells. Toxicology 267(1-):125-31. doi:10.1016/j.tox.2009.10.034
    25. Park E-J, Yi J, Chung K-H, Ryu D-Y, Choi J, Park K (2008) Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180(3):222-29 CrossRef
    26. Petkovic J, Zegura B, Stevanovic M, Drnovsek N, Uskokovic D, Novak S, Filipic M (2010) DNA damage and alterations in expression of DNA damage responsive genes induced by TiO(2) nanoparticles in human hepatoma HepG2 cells. Nanotoxicology 5(3):341-53. doi:10.3109/17435390.2010.507316 CrossRef
    27. Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG, Schiffmann D (2002) Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in syrian hamster embryo fibroblasts. Environ Health Perspect 110(8):797-00 CrossRef
    28. Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92(1):174-85 CrossRef
    29. Semete B, Booysen L, Lemmer Y, Kalombo L, Katata L, Verschoor J, Swai HS (2010) In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomed Nanotechnol Biol Med 6(5):662-71 CrossRef
    30. Shang W, Nuffer JH, Dordick JS, Siegel RW (2007) Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett 7(7):1991-995. doi:10.1021/nl070777r CrossRef
    31. Sim RB, Wallis R (2011) Surface properties: immune attack on nanoparticles. Nat Nano 6(2):80-1 CrossRef
    32. Skocaj M, Filipic M, Petkovic J, Novak S (2011) Titanium dioxide in our everyday life; is it safe? Radiol Oncol 45(4):227-47. doi:10.2478/v10019-011-0037-0 CrossRef
    33. Song X, Zhao Y, Wu W, Bi Y, Cai Z, Chen Q, Li Y, Hou S (2008) PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int J Pharm 350(1-):320-29 CrossRef
    34. Tanaka Y, Suganuma M (2001) Effects of heat treatment on photocatalytic property of sol-gel derived polycrystalline TiO2. J Sol-Gel Sci Technol 22(1-):83-9. doi:10.1023/a:1011268421046 CrossRef
    35. Tao F, Kobzik L (2002) Lung macrophage-epithelial cell interactions amplify particle-mediated cytokine release. Am J Respir Cell Mol Biol 26(4):499-05 CrossRef
    36. Teichroeb J, Forrest J, Jones L (2008) Size-dependent denaturing kinetics of bovine serum albumin adsorbed onto gold nanospheres. Eur Phys J E: Soft Matter Biol Phys 26(4):411-15. doi:10.1140/epje/i2007-10342-9 CrossRef
    37. Wang JJ, Sanderson BJS, Wang H (2007) Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res/Genet Toxicol Environ Mutagen 628(2):99-06 CrossRef
    38. Wang F, Gao F, Lan M, Yuan H, Huang Y, Liu J (2009) Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol In Vitro 23(5):808-15 CrossRef
    39. Wang WR, Zhu RR, Xiao R, Liu H, Wang SL (2010) The electrostatic interactions between nano-TiO(2) and trypsin inhibit the enzyme activity and change the secondary structure of trypsin. Biol Trace Elem Res 142(3):435-46. doi:10.1007/s12011-010-8823-x CrossRef
    40. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794-807 CrossRef
    41. Xia T, Kovochich M, Liong M, M?dler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121-134. doi:10.1021/nn800511k CrossRef
    42. Zhang N, Chittasupho C, Duangrat C, Siahaan TJ, Berkland C (2007) PLGA nanoparticle-peptide conjugate effectively targets intercellular cell-adhesion molecule-1. Bioconjug Chem 19(1):145-52. doi:10.1021/bc700227z CrossRef
    43. Zhang H, Xia T, Meng H, Xue M, George S, Ji Z, Wang X, Liu R, Wang M, France B, Rallo R, Damoiseaux R, Cohen Y, Bradley KA, Zink JI, Nel AE (2011) Differential expression of syndecan-1 mediates cationic nanoparticle toxicity in undifferentiated versus differentiated normal human bronchial epithelial cells. ACS Nano 5(4):2756-769. doi:10.1021/nn200328m CrossRef
    44. Zhao XX, Heng BC, Xiong SJ, Guo J, Tan TTY, Boey FYC, Ng KW, Loo JSC (2010) In vitro assessment of cellular responses to rod-shaped hydroxyapatite nanoparticles of varying lengths and surface areas. Nanotoxicology 5(2):182-94. doi:10.3109/17435390.2010.503943 CrossRef
    45. Zhao X, Ng S, Heng BC, Guo J, Ma L, Tan TTY, Ng KW, Loo SCJ (2012) Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch Toxicol. doi:10.1007/s00204-012-0827-1 (in press)
    46. Ziolli RL, Jardim WF (2002) Photocatalytic decomposition of seawater-soluble crude-oil fractions using high surface area colloid nanoparticles of TiO2. J Photochem Photobiol, A 147(3):205-12 CrossRef
  • 作者单位:Sijing Xiong (1)
    Saji George (2) (3)
    Haiyang Yu (1)
    Robert Damoiseaux (2)
    Bryan France (2)
    Kee Woei Ng (1)
    Joachim Say-Chye Loo (1)

    1. School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
    2. California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
    3. Centre for Sustainable Nanotechnology, School of Chemical and Life Sciences, Nanyang Polytechnic, Singapore, 569824, Singapore
  • ISSN:1432-0738
文摘
The aim of this study is to uncover the size influence of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO2) nanoparticles on their potential cytotoxicity. PLGA and TiO2 nanoparticles of three different sizes were thoroughly characterized before in vitro cytotoxic tests which included viability, generation of reactive oxygen species (ROS), mitochondrial depolarization, integrity of plasma membrane, intracellular calcium influx and cytokine release. Size-dependent cytotoxic effect was observed in both RAW264.7 cells and BEAS-2B cells after cells were incubated with PLGA or TiO2 nanoparticles for 24?h. Although PLGA nanoparticles did not trigger significantly lethal toxicity up to a concentration of 300?μg/ml, the TNF-α release after the stimulation of PLGA nanoparticles should not be ignored especially in clinical applications. Relatively more toxic TiO2 nanoparticles triggered cell death, ROS generation, mitochondrial depolarization, plasma membrane damage, intracellular calcium concentration increase and size-dependent TNF-α release, especially at a concentration higher than 100?μg/ml. These cytotoxic effects could be due to the size-dependent interaction between nanoparticles and biomolecules, as smaller particles tend to adsorb more biomolecules. In summary, we demonstrated that the ability of protein adsorption could be an important paradigm to predict the in vitro cytotoxicity of nanoparticles, especially for low toxic nanomaterials such as PLGA and TiO2 nanoparticles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700