Incorporation of parameter uncertainty into spatial interpolation using Bayesian trans-Gaussian kriging
详细信息    查看全文
  • 作者:Joon Jin Song (1)
    Soohyun Kwon (2)
    GyuWon Lee (2)

    1. Department of Statistical Science
    ; Baylor University ; Waco ; USA
    2. Department of Astronomy and Atmospheric Sciences
    ; Research and Training Team for Future Creative Astrophysicists and Cosmologist ; Kyungpook National University ; Daegu ; Republic of Korea
  • 关键词:precipitation ; kriging ; transformation ; Bayesian kriging ; detrend ; Korea
  • 刊名:Advances in Atmospheric Sciences
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:32
  • 期:3
  • 页码:413-423
  • 全文大小:4,498 KB
  • 参考文献:1. Basistha, A., D. S. Arya, and N. K. Goel, 2008: Spatial distribution of rainfall in Indian Himalayas鈥擜 case study of Uttarakhand Region. / Water Resour. Manag., 22, 1325鈥?346. CrossRef
    2. Box, G. E. P., and D. R. Cox, 1964: An analysis of transformations. / Journal of the Royal Statistical Society (B), 26, 211鈥?52.
    3. Buytaert, W., R. Celleri, P. Willems, B. de Bi猫vre, and G. Wyseure, 2006: Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. / J. Hydrol., 329, 413鈥?21. CrossRef
    4. Carlson, R. E., and T. A. Foley, 1991: The parameter R2 in multiquadric interpolation. / Computers & Mathematics with Applications, 21, 29鈥?2. CrossRef
    5. Chil猫s, J. P., and P. Delfiner, 1999: / Geostatistics: Modeling Spatial Uncertainty. John Wiley and Sons, New York, 731 pp. CrossRef
    6. Cox, D. R., and D. V. Hinkley, 1979: / Theoretical Statistics. Chapman and Hall, London, 528 pp.
    7. Cressie, N., 1993: / Statistics for Spatial Data. Wiley-Interscience, 928 pp.
    8. Cressie, N., and H.-C. Huang, 1999: Classes of nonseparable, spatio-temporal stationary covariance function. / Journal of the American Statistical Association, 94, 1330鈥?340. CrossRef
    9. Diggle, P. J., J. A. Tawn, and R. A. Moyeed, 1998: Model-based geostatistics (with discussion). / Applied Statistics, 47, 299鈥?50.
    10. Dirks, K. N., J. E. Hay, C. D. Stow, and D. Harris, 1998: Highresolution of rainfall on Norfolk Island, Part II: Interpolation of rainfall data. / J. Hydrol., 208, 187鈥?93. CrossRef
    11. Erdin, R., and C. Frei, 2012: Data transformation and uncertainty in geostatistical combination of radar and rain gauges. / J. Hydrometeor., 13, 1332鈥?346. CrossRef
    12. Franke, R., 1982: Scattered data interpolation: Test of some methods. / Mathematics of Computations, 33, 181鈥?00.
    13. Genton, M. G., 2007: Separable approximations of space-time covariance matrices. / Environmetrics, 18, 681鈥?95. CrossRef
    14. Guttorp, P., W. Meiring, and P. D. Sampson, 1994: A space-time analysis of ground-level ozone data. / Environmetrics, 5, 241鈥?54. CrossRef
    15. Handcock, M. S., and M. L. Stein, 1993: A Bayesian analysis of kriging. / Technometrics, 35, 403鈥?10. CrossRef
    16. Isaaks, E. H., and R. M. Srivastava, 1989: / Introduction to Applied Geostatistics. Oxford University Press, Oxford, 561 pp.
    17. Ly, S., C. Charles, and A. Degr茅, 2011: Geostatistical interpolation of daily rainfall at catchment scale: The use of several variogram models in the Ourthe and Ambleve catchments, Belgium. / Hydrology and Earth System Sciences, 15, 2259鈥?274. CrossRef
    18. Ma, C. S., 2008: Recent developments on the construction of spatio-temporal covariance models. / Stochastic Environmental Research and Risk Assessment, 22, S39鈥揝47. CrossRef
    19. Nalder, I. A., and R. W. Wein, 1998: Spatial interpolation of climatic Normals: Test of a new method in the Canadian boreal forest. / Agricultural and Forest Meteorology, 92, 211鈥?25. CrossRef
    20. Schabenberger, O., and C. A. Gotway, 2004: / Statistical Methods for Spatial Data Analysis. Chapman and Hall, 512 pp.
    21. Schuurmans, J. M., M. F. P. Bierkens, E. J. Pebesma, and R. Uijlenhoet, 2007: Automatic prediction of high-resolution daily rainfall fields for multiple extents: The potential of operational radar. / J. Hydrometeor., 8, 1204鈥?224. CrossRef
    22. Verworn, A., and U. Haberlandt, 2011: Spatial interpolation of hourly rainfall-effect of additional information, variogram inference and storm properties. / Hydrology and Earth System Sciences, 15, 569鈥?84. CrossRef
    23. Wang, F. J., and M. M. Wall, 2003: Incorporating parameter uncertainty into prediction intervals for spatial data modeled via a parametric variogram. / Journal of Agricultural, Biological, and Environmental Statistics, 8, 296鈥?09. CrossRef
    24. Xie, H., X. Zhang, B. Yu, and H. Sharif, 2011: Performance evaluation of interpolation methods for incorporating rain gauge measurements into NEXRAD precipitation data: A case study in the upper Guadalupe river basin. / Hydrological Processes, 25, 3711鈥?720. CrossRef
    25. Yao, T., 1998: Automatic modeling of (cross) covariance tables using fast Fourier transform. / Mathematical Geology, 30, 589鈥?15. CrossRef
    26. Yilmaz, H. M., 2007: The effect of interpolation methods in surface definition: An experimental study. / Earth Surface Process and Landforms, 32, 1346鈥?361. CrossRef
  • 刊物主题:Atmospheric Sciences; Meteorology; Geophysics/Geodesy;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9533
文摘
Quantitative precipitation estimation (QPE) plays an important role in meteorological and hydrological applications. Ground-based telemetered rain gauges are widely used to collect precipitation measurements. Spatial interpolation methods are commonly employed to estimate precipitation fields covering non-observed locations. Kriging is a simple and popular geostatistical interpolation method, but it has two known problems: uncertainty underestimation and violation of assumptions. This paper tackles these problems and seeks an optimal spatial interpolation for QPE in order to enhance spatial interpolation through appropriately assessing prediction uncertainty and fulfilling the required assumptions. To this end, several methods are tested: transformation, detrending, multiple spatial correlation functions, and Bayesian kriging. In particular, we focus on a short-term and time-specific rather than a long-term and event-specific analysis. This paper analyzes a stratiform rain event with an embedded convection linked to the passing monsoon front on the 23 August 2012. Data from a total of 100 automatic weather stations are used, and the rainfall intensities are calculated from the difference of 15 minute accumulated rainfall observed every 1 minute. The one-hour average rainfall intensity is then calculated to minimize the measurement random error. Cross-validation is carried out for evaluating the interpolation methods at regional and local levels. As a result, transformation is found to play an important role in improving spatial interpolation and uncertainty assessment, and Bayesian methods generally outperform traditional ones in terms of the criteria.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700