Differential Roles of the Mevalonate Pathway in the Development and Survival of Mouse Purkinje Cells in Culture
详细信息    查看全文
  • 作者:Andrew Barszczyk ; Hong-Shuo Sun ; Yi Quan ; Wenhua Zheng…
  • 关键词:Mevalonate pathway ; Purkinje cell ; Cerebellum ; Development ; Dendritic morphology ; Dendritogenesis ; Cholesterol
  • 刊名:Molecular Neurobiology
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:51
  • 期:3
  • 页码:1116-1129
  • 全文大小:3,886 KB
  • 参考文献:1.Ito M (2000) Mechanisms of motor learning in the cerebellum. Brain Res 886:237鈥?45. doi:10.鈥?016/鈥婼0006-8993(00)03142-5 View Article PubMed
    2.Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413鈥?34. doi:10.鈥?146/鈥媋nnurev.鈥媙euro.鈥?1.鈥?60407.鈥?25606 View Article PubMed
    3.Lund EG, Guileyardo JM, Russell DW (1999) cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci 96:7238鈥?243. doi:10.鈥?073/鈥媝nas.鈥?6.鈥?3.鈥?238 View Article PubMed Central PubMed
    4.Kotti TJ, Ramirez DMO, Pfeiffer BE et al (2006) Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc Natl Acad Sci U S A 103:3869鈥?874. doi:10.鈥?073/鈥媝nas.鈥?600316103 View Article PubMed Central PubMed
    5.Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425鈥?30. doi:10.鈥?038/鈥?43425a0 View Article PubMed
    6.Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31鈥?9. doi:10.鈥?038/鈥?5036052 View Article PubMed
    7.Tsui-Pierchala BA, Encinas M, Milbrandt J, Johnson EM (2002) Lipid rafts in neuronal signaling and function. TRENDS in Neurosci 25:412鈥?17. doi:10.鈥?016/鈥婼0166-2236(02)02215-4
    8.McTaggart SJ (2006) Isoprenylated proteins. Cell Mol Life Sci 63:255鈥?67. doi:10.鈥?007/鈥媠00018-005-5298-6 View Article PubMed
    9.Samuel F, Hynds DL (2010) RHO GTPase signaling for axon extension: is prenylation important? Mol Neurobiol 42:133鈥?42. doi:10.鈥?007/鈥媠12035-010-8144-2 View Article PubMed
    10.Lutz RJ, Trujillo MA, Denham KS et al (1992) Nucleoplasmic localization of prelamin A: implications for prenylation-dependent lamin A assembly into the nuclear lamina. Proc Natl Acad Sci U S A 89:3000鈥?004. doi:10.鈥?307/鈥?359021 View Article PubMed Central PubMed
    11.Gaist D, Jeppesen U, Andersen M et al (2002) Statins and risk of polyneuropathy: a case-control study. Neurology 58:1333鈥?337. doi:10.鈥?212/鈥媁NL.鈥?8.鈥?.鈥?333
    12.Wagstaff LR, Mitton MW, Arvik BM, Doraiswamy PM (2003) Statin-associated memory loss: analysis of 60 case reports and review of the literature. Pharmacotherapy 23:871鈥?80. doi:10.鈥?592/鈥媝hco.鈥?3.鈥?.鈥?71.鈥?2720
    13.Teive HAG, Munhoz RP, Werneck LC (2012) Acquired cerebellar ataxia due to statin use. Arq Neuropsiquiatr 70:152. doi:10.鈥?590/鈥婼0004-282X201200020001鈥?
    14.Michikawa M, Yanagisawa K (1999) Inhibition of cholesterol production but not of nonsterol isoprenoid products induces neuronal cell death. J Neurochem 72:2278鈥?285. doi:10.鈥?046/鈥媕.鈥?471-4159.鈥?999.鈥?722278.鈥媥 View Article PubMed
    15.Tanaka T, Tatsuno I, Uchida D et al (2000) Geranylgeranyl-pyrophosphate, an isoprenoid of mevalonate cascade, is a critical compound for rat primary cultured cortical neurons to protect the cell death induced by 3-hydroxy-3-methylglutaryl-CoA reductase inhibition. J Neurosci 20:2852鈥?859PubMed
    16.Schulz JG, B枚sel J, Stoeckel M et al (2004) HMG-CoA reductase inhibition causes neurite loss by interfering with geranylgeranylpyrophosphate synthesis. J Neurochem 89:24鈥?2. doi:10.鈥?046/鈥媕.鈥?471-4159.鈥?003.鈥?2305.鈥媥 View Article PubMed
    17.Meske V, Albert F, Richter D et al (2003) Blockade of HMG-CoA reductase activity causes changes in microtubule-stabilizing protein tau via suppression of geranylgeranylpyrophosphate formation: implications for Alzheimer's disease. Eur J Neurosci 17:93鈥?02. doi:10.鈥?046/鈥媕.鈥?460-9568.鈥?003.鈥?2433.鈥媥
    18.Garc铆a-Rom谩n N, Alvarez AM, Toro MJ et al (2001) Lovastatin induces apoptosis of spontaneously immortalized rat brain neuroblasts: involvement of nonsterol isoprenoid biosynthesis inhibition. Mol Cell Neurosci 17:329鈥?41. doi:10.鈥?006/鈥媘cne.鈥?000.鈥?904 View Article PubMed
    19.Xiang Z, Reeves SA (2009) Simvastatin induces cell death in a mouse cerebellar slice culture (CSC) model of developmental myelination. Exp Neurol 215:41鈥?7. doi:10.鈥?016/鈥媕.鈥媏xpneurol.鈥?008.鈥?9.鈥?10 View Article PubMed Central PubMed
    20.M盲rz P, Otten U, Miserez AR (2007) Statins induce differentiation and cell death in neurons and astroglia. Glia 55:1鈥?2. doi:10.鈥?002/鈥媑lia.鈥?0422 View Article PubMed
    21.F眉nfschilling U, Saher G, Xiao L et al (2007) Survival of adult neurons lacking cholesterol synthesis in vivo. BMC Neurosci 8:1. doi:10.鈥?186/鈥?471-2202-8-1 View Article PubMed Central PubMed
    22.Pooler AM, Xi SC, Wurtman RJ (2006) The 3-hydroxy-3-methylglutaryl co-enzyme A reductase inhibitor pravastatin enhances neurite outgrowth in hippocampal neurons. J Neurochem 97:716鈥?23. doi:10.鈥?111/鈥媕.鈥?471-4159.鈥?006.鈥?3763.鈥媥 View Article PubMed
    23.Fan Q-W, Yu W, Gong J-S et al (2002) Cholesterol-dependent modulation of dendrite outgrowth and microtubule stability in cultured neurons. J Neurochem 80:178鈥?90. doi:10.鈥?046/鈥媕.鈥?022-3042.鈥?001.鈥?0686.鈥媥
    24.Wu K-Y, Zhou X-P, Luo Z-G (2010) Geranylgeranyltransferase I is essential for dendritic development of cerebellar Purkinje cells. Mol Brain 3:18. doi:10.鈥?186/鈥?756-6606-3-18 View Article PubMed Central PubMed
    25.Law M, Rudnicka AR (2006) Statin safety: a systematic review. Am J Cardiol 97:52C鈥?0C. doi:10.鈥?016/鈥媕.鈥媋mjcard.鈥?005.鈥?2.鈥?10 View Article PubMed
    26.Be艂towski J, W贸jcicka G, Jamroz-Wi艣niewska A (2009) Adverse effects of statins鈥攎echanisms and consequences. Curr Drug Saf 4:209鈥?28. doi:10.鈥?174/鈥?574886097890069鈥?9
    27.Artuch R, Brea-Calvo G, Briones P et al (2006) Cerebellar ataxia with coenzyme Q10 deficiency: diagnosis and follow-up after coenzyme Q10 supplementation. J Neurol Sci 246:153鈥?58. doi:10.鈥?016/鈥媕.鈥媕ns.鈥?006.鈥?1.鈥?21 View Article PubMed
    28.Boycott KM, Bonnemann C, Herz J et al (2009) Mutations in VLDLR as a cause for autosomal recessive cerebellar ataxia with mental retardation (dysequilibrium syndrome). J Child Neurol 24:1310鈥?315. doi:10.鈥?177/鈥?883073809332696鈥?/span> View Article PubMed Central PubMed
    29.Dason JS, Smith AJ, Marin L, Charlton MP (2010) Vesicular sterols are essential for synaptic vesicle cycling. J Neurosci 30:15856鈥?5865. doi:10.鈥?523/鈥婮NEUROSCI.鈥?132-10.鈥?010 View Article PubMed
    30.Smith AJ, Sugita S, Charlton MP (2010) Cholesterol-dependent kinase activity regulates transmitter release from cerebellar synapses. J Neurosci 30:6116鈥?121. doi:10.鈥?523/鈥婮NEUROSCI.鈥?170-10.鈥?010 View Article PubMed
    31.Cajal SR (2000) Cerebellum. In: Pasik P, Pasik T (eds). Texture of the nervous system of man and the vertebrates: II. Springer, Slovenia, pp 319鈥?50
    32.Altman J (1972) Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145:399鈥?63. doi:10.鈥?002/鈥媍ne.鈥?01450402 View Article PubMed
    33.Hendelman WJ, Aggerwal AS (1980) The Purkinje neuron: I. A Golgi study of its development in the mouse and in culture. J Comp Neurol 193:1063鈥?079. doi:10.鈥?002/鈥媍ne.鈥?01930417 View Article PubMed
    34.Armengol J-A, Sotelo C (1991) Early dendritic development of Purkinje cells in the rat cerebellum. A light and electron microscopic study using axonal tracing in 鈥渋n vitro鈥?slices. Dev Brain Res 64:95鈥?14. doi:10.鈥?016/鈥?165-3806(91)90213-3 View Article
    35.Privat A, Drian MJ (1976) Postnatal maturation of rat Purkinje cells cultivated in the absence of two afferent systems: an ultrastructural study. J Comp Neurol 166:201鈥?43. doi:10.鈥?002/鈥媍ne.鈥?01660207 View Article PubMed
    36.Boukhtouche F, Janmaat S, Vodjdani G et al (2006) Retinoid-related orphan receptor alpha controls the early steps of Purkinje cell dendritic differentiation. J Neurosci 26:1531鈥?538. doi:10.鈥?523/鈥婮NEUROSCI.鈥?636-05.鈥?006 View Article PubMed
    37.Weber A, Schachner M (1984) Maintenance of immunocytologically identified Purkinje cells from mouse cerebellum in monolayer culture. Brain Res 311:119鈥?30. doi:10.鈥?016/鈥?006-8993(84)91404-5
    38.Hockberger PE, Tseng HY, Connor JA (1989) Development of rat cerebellar Purkinje cells: electrophysiological properties following acute isolation and in long-term culture. J Neurosci 9:2258鈥?271PubMed
    39.Baptista CA, Hatten ME, Blazeski R, Mason CA (1994) Cell-cell interactions influence survival and differentiation of purified Purkinje cells in vitro. Neuron 12:243鈥?60. doi:10.鈥?016/鈥?896-6273(94)90268-2
    40.Metzger F (2010) Molecular and cellular control of dendrite maturation during brain development. Curr Mol Pharmacol 3:1鈥?1. doi:10.鈥?174/鈥?874467211003010鈥?01
    41.Swinny JD, van der Want JJL, Gramsbergen A (2005) Cerebellar development and plasticity: perspectives for motor coordination strategies, for motor skills, and for therapy. Neural Plasticity 12:153鈥?60. doi:10.鈥?155/鈥婲P.鈥?005.鈥?53 , discussion 263-72View Article PubMed Central PubMed
    42.Furuya S, Makino A, Hirabayashi Y (1998) An improved method for culturing cerebellar Purkinje cells with differentiated dendrites under a mixed monolayer setting. Brain Res Brain Res Protoc 3:192鈥?98. doi:10.鈥?016/鈥婼1385-299X(98)00040-3
    43.Endo A, Tsujita Y, Kuroda M, Tanzawa K (1977) Inhibition of cholesterol synthesis in vitro and in vivo by ML-236A and ML-236B, competitive inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Eur J Biochem 77:31鈥?6. doi:10.鈥?111/鈥媕.鈥?432-1033.鈥?977.鈥媡b11637.鈥媥 View Article PubMed
    44.Sierra S, Ramos MC, Molina P et al (2011) Statins as neuroprotectants: a comparative in vitro study of lipophilicity, blood
    ain-barrier penetration, lowering of brain cholesterol, and decrease of neuron cell death. J Alzheimers Dis 23:307鈥?18. doi:10.鈥?233/鈥婮AD-2010-101179 PubMed
    45.Mauch DH, N盲gler K, Schumacher S et al. (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354鈥?357. doi:10.鈥?126/鈥媠cience.鈥?94.鈥?545.鈥?354
    46.Endo A, Kuroda M, Tanzawa K (2004) Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. Atheroscler Suppl 5:39鈥?2. doi:10.鈥?016/鈥媕.鈥媋therosclerosiss鈥媢p.鈥?004.鈥?8.鈥?21 View Article PubMed
    47.Zhong W-BW, Hsu S-PS, Ho P-YP et al (2011) Lovastatin inhibits proliferation of anaplastic thyroid cancer cells through up-regulation of p27 by interfering with the Rho/ROCK-mediated pathway. Biochem Pharmacol 82:1663鈥?672. doi:10.鈥?016/鈥媕.鈥媌cp.鈥?011.鈥?8.鈥?21 View Article PubMed
    48.Bergstrom JD, Kurtz MM, Rew DJ et al (1993) Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc Natl Acad Sci U S A 90:80鈥?4. doi:10.鈥?307/鈥?360993 View Article PubMed Central PubMed
    49.Lindsey S, Harwood HJ (1995) Inhibition of mammalian squalene synthetase activity by zaragozic acid A is a result of competitive inhibition followed by mechanism-based irreversible inactivation. J Biol Chem 270:9083鈥?096. doi:10.鈥?074/鈥媕bc.鈥?70.鈥?6.鈥?083
    50.Nieweg K, Schaller H, Pfrieger FW (2009) Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats. J Neurochem 109:125鈥?34. doi:10.鈥?111/鈥媕.鈥?471-4159.鈥?009.鈥?5917.鈥媥 View Article PubMed
    51.Garcia-Segura LM, Baetens D, Roth J et al (1984) Immunohistochemical mapping of calcium-binding protein immunoreactivity in the rat central nervous system. Brain Res 296:75鈥?6. doi:10.鈥?016/鈥?006-8993(84)90512-2 View Article PubMed
    52.Legrand C, Thomasset M, Parkes CO et al (1983) Calcium-binding protein in the developing rat cerebellum. Cell Tissue Res. doi:10.鈥?007/鈥婤F00238305
    53.Cajal SR (2000) Histogenesis of the cerebellum. In: Pasik P, Pasik T (eds). Texture of the Nervous System of Man and the Vertebrates: II. Springer, Slovenia, pp 395鈥?20
    54.Thomasset M, Parkes CO, Cuisinier-Gleizes P (1982) Rat calcium-binding proteins: distribution, development, and vitamin D dependence. Am J Physiol Endocrinol Metab 243:E483鈥揈488
    55.Enderlin S, Norman AW, Celio MR (1987) Ontogeny of the calcium binding protein calbindin D-28聽k in the rat nervous system. Anat Embryol (Berl) 177:15鈥?8. doi:10.鈥?007/鈥婤F00325286 View Article
    56.Iacopino AM, Rhoten WB, Christakos S (1990) Calcium binding protein (calbindin-D28k) gene expression in the developing and aging mouse cerebellum. Brain Res Mol Brain Res 8:283鈥?90. doi:10.鈥?016/鈥?169-328X(90)90041-B
    57.Wassef M, Zanetta JP, Brehier A, Sotelo C (1985) Transient biochemical compartmentalization of Purkinje cells during early cerebellar development. Dev Biol 111:129鈥?37. doi:10.鈥?016/鈥?012-1606(85)90441-5 View Article PubMed
    58.Maeda A, Yano T, Itoh Y et al (2010) Down-regulation of RhoA is involved in the cytotoxic action of lipophilic statins in HepG2 cells. Atherosclerosis 208:112鈥?18. doi:10.鈥?016/鈥媕.鈥媋therosclerosis.鈥?009.鈥?7.鈥?33 View Article PubMed
    59.Itagaki M, Takaguri A, Kano S et al (2009) Possible mechanisms underlying statin-induced skeletal muscle toxicity in L6 fibroblasts and in rats. J Pharmacol Sci 109:94鈥?01. doi:10.鈥?254/鈥媕phs.鈥?8238FP View Article PubMed
    60.Fuchs D, Berges C, Opelz G et al (2008) HMG-CoA reductase inhibitor simvastatin overcomes bortezomib-induced apoptosis resistance by disrupting a geranylgeranyl pyrophosphate-dependent survival pathway. Biochem Biophys Res Commun 374:309鈥?14. doi:10.鈥?016/鈥媕.鈥媌brc.鈥?008.鈥?7.鈥?12 View Article PubMed
    61.Park H-J, Zhang Y, Georgescu SP et al (2006) Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem Cell Rev 2:93鈥?02. doi:10.鈥?007/鈥媠12015-006-0015-x View Article PubMed
    62.Ogata Y, Takahashi M, Takeuchi K et al (2002) Fluvastatin induces apoptosis in rat neonatal cardiac myocytes: a possible mechanism of statin-attenuated cardiac hypertrophy. J Cardiovasc Pharmacol 40:907鈥?15View Article PubMed
    63.Yanae M, Tsubaki M, Satou T et al (2011) Statin-induced apoptosis via the suppression of ERK1/2 and Akt activation by inhibition of the geranylgeranyl-pyrophosphate biosynthesis in glioblastoma. J Exp Clin Cancer Res 30:74. doi:10.鈥?186/鈥?756-9966-30-74 View Article PubMed Central PubMed
    64.Fujiwara K, Tsubaki M, Yamazoe Y et al (2008) Fluvastatin induces apoptosis on human tongue carcinoma cell line HSC-3. Yakugaku Zasshi 128:153鈥?58View Article PubMed
    65.Dai Y, Khanna P, Chen S et al (2007) Statins synergistically potentiate 7-hydroxystaurosporine (UCN-01) lethality in human leukemia and myeloma cells by disrupting Ras farnesylation and activation. Blood 109:4415鈥?423. doi:10.鈥?182/鈥媌lood-2006-09-047076 View Article PubMed Central PubMed
    66.Nishida S, Matsuoka H, Tsubaki M et al (2005) Mevastatin induces apoptosis in HL60 cells dependently on decrease in phosphorylated ERK. Mol Cell Biochem 269:109鈥?14. doi:10.鈥?007/鈥媠11010-005-3086-0
    67.akata R, Fukasawa S, Hara T et al (2004) Cerivastatin-induced apoptosis of human aortic smooth muscle cells through partial inhibition of basal activation of extracellular signal-regulated kinases. Cardiovasc Pathol 13:41鈥?8. doi:10.鈥?016/鈥婼1054-8807(03)00104-2
    68.Nishida S, Tsubaki M, Hoshino M et al (2005) Nitrogen-containing bisphosphonate, YM529/ONO-5920 (a novel minodronic acid), inhibits RANKL expression in a cultured bone marrow stromal cell line ST2. Biochem Biophys Res Commun 328:91鈥?7. doi:10.鈥?016/鈥媕.鈥媌brc.鈥?004.鈥?2.鈥?45 View Article PubMed
    69.Fujita T, Izumo N, Fukuyama R et al (2001) Incadronate and etidronate accelerate phosphate-primed mineralization of MC4 cells via ERK1/2-Cbfa1 signaling pathway in a Ras-independent manner: further involvement of mevalonate-pathway blockade for incadronate. Jpn J Pharmacol 86:86鈥?6View Article PubMed
    70.Tsubaki M, Itoh T, Satou T et al (2013) Nitrogen-containing bisphosphonates induce apoptosis of hematopoietic tumor cells via inhibition of Ras signaling pathways and Bim-mediated activation of the intrinsic apoptotic pathway. Biochem Pharmacol 85:163鈥?72. doi:10.鈥?016/鈥媕.鈥媌cp.鈥?012.鈥?0.鈥?09 View Article PubMed
    71.Vance JE, Pan D, Campenot RB et al (1994) Evidence that the major membrane lipids, except cholesterol, are made in axons of cultured rat sympathetic neurons. J Neurochem 62:329鈥?37. doi:10.鈥?046/鈥媕.鈥?471-4159.鈥?994.鈥?2010329.鈥媥
    72.F眉nfschilling U, Jockusch WJ, Sivakumar N et al (2012) Critical time window of neuronal cholesterol synthesis during neurite outgrowth. J Neurosci 32:7632鈥?645. doi:10.鈥?523/鈥婮NEUROSCI.鈥?352-11.鈥?012 View Article PubMed
    73.Ko M, Zou K, Minagawa H et al (2005) Cholesterol-mediated neurite outgrowth is differently regulated between cortical and hippocampal neurons. J Biol Chem 280:42759鈥?2765. doi:10.鈥?074/鈥媕bc.鈥婱509164200
    74.Volpe JJ, Goldberg RI, Bhat NR (1985) Cholesterol biosynthesis and its regulation in dissociated cell cultures of fetal rat brain: developmental changes and the role of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Neurochem 45:536鈥?43. doi:10.鈥?111/鈥媕.鈥?471-4159.鈥?985.鈥媡b04021.鈥媥 View Article PubMed
    75.Valenza M, Cattaneo E (2011) Emerging roles for cholesterol in Huntington's disease. TRENDS in Neurosci 34:474鈥?86. doi:10.鈥?016/鈥媕.鈥媡ins.鈥?011.鈥?6.鈥?05 View Article
    76.Hering H, Lin C-C, Sheng M (2003) Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 23:3262鈥?271PubMed
    77.Hall A, Lalli G (2010) Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2:a001818. doi:10.鈥?101/鈥媍shperspect.鈥媋001818 View Article PubMed Central PubMed
    78.Nikolic M (2002) The role of Rho GTPases and associated kinases in regulating neurite outgrowth. Int J Biochem Cell Biol 34:731鈥?45. doi:10.鈥?016/鈥婼1357-2725(01)00167-4
    79.Iguchi Y, Katsuno M, Niwa J-I et al (2009) TDP-43 depletion induces neuronal cell damage through dysregulation of Rho family GTPases. J Biol Chem 284:22059鈥?2066. doi:10.鈥?074/鈥媕bc.鈥婱109.鈥?12195 View Article PubMed Central PubMed
    80.Valtersson C, van Du每n G, Verkleij AJ et al (1985) The influence of dolichol, dolichol esters, and dolichyl phosphate on phospholipid polymorphism and fluidity in model membranes. J Biol Chem 260:2742鈥?751PubMed
    81.Cantagrel V, Lefeber DJ (2011) From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases. J Inherit Metab Dis 34:859鈥?67. doi:10.鈥?007/鈥媠10545-011-9301-0 View Article PubMed Central PubMed
    82.Zhang YY, Appelkvist ELE, Kristensson KK, Dallner GG (1996) The lipid compositions of different regions of rat brain during development and aging. NBA 17:869鈥?75. doi:10.鈥?016/鈥婼0197-4580(96)00076-0
    83.Baker SK, Tarnopolsky MA (2001) Statin myopathies: pathophysiologic and clinical perspectives. Clin Invest Med 24:258鈥?72PubMed
  • 作者单位:Andrew Barszczyk (1)
    Hong-Shuo Sun (1) (2)
    Yi Quan (1)
    Wenhua Zheng (3)
    Milton P. Charlton (1)
    Zhong-Ping Feng (1)

    1. Department of Physiology, University of Toronto, Medical Sciences Building, Rm. 3306, 1 King鈥檚 College, Toronto, ON, M5S 1A8, Canada
    2. Department of Surgery, University of Toronto, Toronto, Canada
    3. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
The cerebellum is an important locus for motor learning and higher cognitive functions, and Purkinje cells constitute a key component of its circuit. Biochemically, significant turnover of cholesterol occurs in Purkinje cells, causing the activation of the mevalonate pathway. The mevalonate pathway has important roles in cell survival and development. In this study, we investigated the outcomes of mevalonate inhibition in immature and mature mouse cerebellar Purkinje cells in culture. Specifically, we found that the inhibition of the mevalonate pathway by mevastatin resulted in cell death, and geranylgeranylpyrophosphate (GGPP) supplementation significantly enhanced neuronal survival. The surviving immature Purkinje cells, however, exhibited dendritic developmental deficits. The morphology of mature cells was not affected. The inhibition of squalene synthase by zaragozic acid caused impaired dendritic development, similar to that seen in the GGPP-rescued Purkinje cells. Our results indicate GGPP is required for cell survival and squalene synthase for the cell development of Purkinje cells. Abnormalities in Purkinje cells are linked to motor-behavioral learning disorders such as cerebellar ataxia. Thus, serious caution should be taken when using drugs that inhibit geranylgeranylation or the squalene-cholesterol branch of the pathway in the developing stage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700