Nonlocal piezoelasticity based wave propagation of bonded double-piezoelectric nanobeam-systems
详细信息    查看全文
  • 作者:A. Ghorbanpour Arani (1) (2)
    R. Kolahchi (1)
    S. A. Mortazavi (1)
  • 关键词:Double ; piezoelectric nanobeam ; systems ; Wave propagation ; Pasternak foundation ; Euler–Bernoulli beam ; Exact solution
  • 刊名:International Journal of Mechanics and Materials in Design
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:10
  • 期:2
  • 页码:179-191
  • 全文大小:
  • 参考文献:1. Ansari, R., Arash, B., Rouhi, H.: Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity. Compos. Struct. 93, 2419-429 (2011) CrossRef
    2. Aydogdu, M., Filiz, S.: Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity. Physica E 43, 1229-234 (2011) CrossRef
    3. Aydogdu, M.: A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Physica E 4, 1651-655 (2006)
    4. Civalek, ?., Demir, ?.: Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory. Appl. Math. Model. 35, 2053-067 (2011) CrossRef
    5. Dong, K., Zhu, S.Q., Wang, X.: Wave propagation in multiwall carbon nanotubes embedded in a matrix material. Compos. Struct. 82, 1- (2006) CrossRef
    6. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1-6 (1972) CrossRef
    7. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703-710 (1983) CrossRef
    8. Ghorbanpour Arani, A., Mosallaie Barzoki, A.A., Kolahchi, R., Loghman, A.: Pasternak foundation effect on the axial and torsional waves propagation in embedded DWCNTs using nonlocal elasticity cylindrical shell theory. J. Mech. Sci. Technol. 25, 2385-391 (2011a) CrossRef
    9. Ghorbanpour Arani, A., Kolahchi, R., Mosallaie Barzoki, A.A.: Effect of material in-homogeneity on electro-thermo-mechanical behaviors of functionally graded piezoelectric rotating shaft. Appl. Math. Model. 35, 2771-789 (2011b) CrossRef
    10. Ghorbanpour Arani, A., Atabakhshian, V., Loghman, A., Shajari, A.R., Amir, S.: Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method. Physica B 407, 2549-555 (2012a) CrossRef
    11. Ghorbanpour Arani, A., Kolahchi, R., Vossough, H.: Buckling analysis and smart control of SLGS using elastically coupled PVDF nanoplate based on the nonlocal Mindlin plate theory. Physica B 407, 4458-465 (2012b) CrossRef
    12. Heireche, H., Tounsi, A., Benzair, A., Maachou, M., Adda Bedia, E.A.: Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity. Physica E 40, 2791-799 (2008) CrossRef
    13. Ke, L.L., Wang, Y.S., Wang, ZhD: Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos. Struct. 94, 2038-047 (2012) CrossRef
    14. Ke, L.L., Xiang, Y., Yang, J., Kitipornchai, S.: Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comput. Mater. Sci. 47, 409-17 (2009) CrossRef
    15. Kiani, K.: Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique. Physica E 43, 387-97 (2010) CrossRef
    16. Kuang, Y.D., He, X.Q., Chen, C.Y., Li, G.Q.: Analysis of nonlinear vibrations of double walled carbon nanotubes conveying fluid. Comput. Mater. Sci. 45, 875-80 (2009) CrossRef
    17. Narendar, S., Gopalakrishnan, S.: Nonlocal scale effects on wave propagation in multi-walled carbon nanotubes. Comput. Mater. Sci. 47, 526-38 (2009) CrossRef
    18. Narendar, S.: Buckling analysis of micro-/nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects. Compos. Struct. 93, 3093-103 (2011) CrossRef
    19. Pradhan, S.C., Kumar, A.: Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method. Compos. Struct. 93, 774-79 (2011) CrossRef
    20. Pradhan, S.C., Murmu, T.: Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory. Physica E 42, 1293-301 (2010) CrossRef
    21. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288-07 (2007) CrossRef
    22. Setoodeh, A.R., Khosrownejad, M., Malekzadeh, P.: Exact nonlocal solution for postbuckling of single-walled carbon nanotubes. Physica E 43, 1730-737 (2011) CrossRef
    23. Shen, H.S., Zhang, C.L.: Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model. Compos. Struct. 92, 1073-084 (2010) CrossRef
    24. Shen, L., Shen, H.S., Zhang, C.L.: Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments. Comput. Mater. Sci. 48, 680-85 (2010) CrossRef
    25. Wang, L.: Wave propagation of fluid-conveying single-walled carbon nanotubes via gradient elasticity theory. Comput. Mater. Sci. 49, 761-66 (2010) CrossRef
    26. Wang, Q., Varadan, V.K.: Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Mater. Struct. 16, 178-90 (2007) CrossRef
    27. Wu, J.X., Li, X.F., Tang, G.J.: Bending wave propagation of carbon nanotubes in a bi-parameter elastic matrix. Physica B 407, 684-88 (2011) CrossRef
    28. Xie, G.Q., Han, X., Liu, G.R.: Effect of small size-scale on the radial buckling pressure of a simply supported multi-walled carbon nanotube. Smart Mater. Struct. 15, 1143-149 (2006) CrossRef
    29. Yang, J., Ke, L.L., Kitipornchai, S.: Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Physica E 42, 1727-735 (2010) CrossRef
    30. Yan, Z., Jiang, L.Y.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22, 245703 (2011) CrossRef
  • 作者单位:A. Ghorbanpour Arani (1) (2)
    R. Kolahchi (1)
    S. A. Mortazavi (1)

    1. Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
    2. Institute of Nanoscience & Nanotechnology, University of Kashan, Kashan, Iran
  • ISSN:1573-8841
文摘
Piezoelectric nanobeam (PNB) offer the possibility of being used in micro-electromechanical systems and nano-electromechanical systems and the dynamic testing of such structures often produces stress wave propagation in them. This work concerns with the size-dependent wave propagation of double-piezoelectric nanobeam-systems (DPNBSs) based on Euler–Bernoulli beam model. The two piezoelectric nanobeams are coupled by an enclosing elastic medium which is simulated by Pasternak foundation. Nonlocal piezoelasticity theory is used to derive the general differential equation based on Hamilton’s principal to include those scale effects. Particular attention is paid to the wave propagation piezoelectric control of the coupled system in three cases namely in-phase wave propagation, out-of-phase wave propagation and wave propagation when one PNB is stationary. In three mentioned cases, an analytical method is proposed to obtain phase velocity; cut-off and escape frequencies of the DPNBSs. Results indicate that the imposed external voltage is an effective controlling parameter for wave propagation of the coupled system. Furthermore, the phase velocity of in-phase wave propagation is independent of elastic medium stiffness.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700