Nonlinear vibration and instability of fluid-conveying DWBNNT embedded in a visco-Pasternak medium using modified couple stress theory
详细信息    查看全文
  • 作者:A. Ghorbanpour Arani ; M. R. Bagheri…
  • 关键词:DWBNNT ; Fluid flow ; Viscoelastic Pasternak medium ; Electric potential
  • 刊名:Journal of Mechanical Science and Technology
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:27
  • 期:9
  • 页码:2645-2658
  • 全文大小:911KB
  • 参考文献:1. Y. Q. Zhang, G. R. Liu and X. Y. Xie, Free transverse vibrations of doublewalled carbon nanotubes using a theory of nonlocal elasticity, / Phy. Review B, 71 (2005) 195404. CrossRef
    2. Y. Q. Zhang, G. R. Liu and X. Han, Transverse vibrations of double-walled carbon nanotubes under compressive axial load, / Phy. Letters A, 340 (2005) 258-6. CrossRef
    3. P. J. F. Harris, / Carbon nanotubes and related structures, Cambridge University Press, Londen (1999). CrossRef
    4. C. Q. Ru, Effective bending stiffness of carbon nanotubes, / Phy. Review B, 62 (2000) 9973-976. CrossRef
    5. C. W. Chen, M. H. Lee and S. J. Clark, Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field, / Nanotechnology, 15 (2004) 1837. CrossRef
    6. A. Salehi-Khojin and N. Jalili, Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings, / Compos. Sci. Tech., 68 (2008) 1489-501. CrossRef
    7. C. C. Tang, Y. Bando, T. Sato and K. Kurashima, A novel precursor for synthesis of pure boron nitride nanotubes, / Chem. Comm., 12 (2002) 1290-291. CrossRef
    8. E. Hernandez, C. Goze, P. Bernier and A. Rubio, Elastic properties of C and BxCyNz composite nanotubes, / Phy. Rev. Lett., 80 (1998) 4502-505. CrossRef
    9. K. N. Kudin, G. E. Scuseria and B. I. Yakoboson, C2F, BN, and C nanoshell elasticity from ab initio computations, / Phy. Review B, 64 (2001) 235406. CrossRef
    10. N. G. Chopra and A. Zettl, Measurement of the elastic modulus of a multiwall boron nitride nanotube, / Solid State Comm., 105 (1998) 297-00. CrossRef
    11. A. P. Suryavanshi, M. F. Yu, J. G. Wen, C,C, Tang and Y. Bando, Elastic modulus and resonance behavior of boron nitride nanotubes, / Appl. Phy. Lett., 84 (2004) 2527-529. CrossRef
    12. B. Akdim, R. Pachter, X. F. Duan and W. W. Adams, Comparative theoretical study of single-wall carbon and boron-nitride nanotubes, / Phy. Review B, 67 (2003) 245404. CrossRef
    13. T. Dumitrica, H. F. Bettinger, G. E. Scuseria and B. I. Yakobson, Thermodynamics of yield in boron nitride nanotubes, / Phy. Review B, 68 (2003) 85412. CrossRef
    14. W. H. Moon and H. J. Hwang, Molecular-dynamics simulation of structure and thermal behavior of boron nitride nanotubes, / Nanotechnology, 15 (2004) 431-34. CrossRef
    15. J. Yoon, C. Q. Ru and A. Mioduchowski, Vibration and instability of carbon nanotubes conveying fluid, / Compos. Sci. Tech., 65 (2005) 1326-343. CrossRef
    16. N. Khosravian and H. Rafii-Tabar, Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam, / Nanotechnology, 19 (2008) 275703. CrossRef
    17. H. L. Lee and W. J. Chang, Vibration analysis of fluidconveying double-walled carbon nanotubes based on nonlocal elastic theory, / J. Phys. Cond. Mat., 21 (2009) 115302. CrossRef
    18. L. Wang and Q. Ni, A reappraisal of the computational modeling of carbon nanotubes conveying viscous fluid, / Mech. Res. Comm., 36 (2009) 833-37. CrossRef
    19. W. J. Chang and H. L. Lee, Free vibration of a single-walled carbon nanotube containing a fluid flow using the Timoshenko beam model, / Phy. Lett. A, 373 (2009) 982-85. CrossRef
    20. Y. M. Fu, J. W. Hong and X. Q. Wang, Analysis of nonlinear vibration for embedded carbon nanotubes, / J. Sound and Vib., 296 (2006) 746-56. CrossRef
    21. D. Walgraef, On the mechanics of deformation instabilities in carbon nanotubes, / Eur. Phy. J, 146 (2007) 443-57.
    22. Y. D. Kuang, X. Q. He, C. Y. Chen and G. Q. Li, Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid, / Comput. Mat. Sci., 45 (2009) 875-80. CrossRef
    23. J. Yang, L. L. Ke and S. Kitipornchai, Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory, / Physica E, 42 (2010) 1727-735. CrossRef
    24. K. Kumar, M. E. Andrews, V. Jayashankar, A. K. Mishra and S. Suresh, Measurement of viscoelastic properties of polyacrylamide-based tissue-mimicking phantoms for ultrasound elastography applications, / IEEE Trans. Ins. Meas., 59 (2010) 1224-232. CrossRef
    25. P. Soltani, M. M. Taherian and A. Farshidianfar, Vibration and instability of a viscous-fluid-conveying single-walled carbon nanotube embedded in a visco-elastic medium, / J. Phys. D: Appl. Phys., 43 (2010) 425401-25409. CrossRef
    26. A. G. Arani, S. Amir, A. R. Shajari, M. R. Mozdianfard, Z. K. Maraghi and M. Mohammadimehr, Electro-thermal nonlocal vibration analysis of embedded DWBNNTs, / Proc. Ins. Mech. Eng. Part C, 224 (2011) 745-56.
    27. A. G. Arani, S. Amir, A. R. Shajari and M. R. Mozdianfard, Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory, / Compos. Part B: Eng., 43 (2012) 195-03. CrossRef
    28. A. G. Arani, M. Shokravi, S. Amir and M. R. Mozdianfard, Nonlocal electro-thermal transverse vibration of embedded fluid-conveying DWBNNTs, / J. Mech. Sci. Tech., 26 (2012) 1455-462. CrossRef
    29. T. H. Brockmann, / Theory of adaptive fiber composites, Springer Science, USA (2009). CrossRef
    30. V. Rashidi, H. R. Mirdamadi and E. Shirani, A novel model for vibrations of nanotubes conveying nanoflow, / Comput. Mat. Sci., 51 (2012) 347-52. CrossRef
    31. G. Karniadakis, A. Beskok and N. Aluru, / Microflows and Nanoflows: Fundamentals and Simulation, Springer, USA (2005).
    32. L. L. Ke and Y. S. Wang, Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory, / Physica E, 10 (2011) 1016-021.
    33. M. Amabili, / Nonlinear vibrations and stability of shells and plates, Cambridge University Press, London (2008). CrossRef
    34. L. L. Ke, Y. Xiang, J. Yang and S. Kitipornchai, Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory, / Comput. Mat. Sci., 47 (2009) 409-17. CrossRef
    35. C. Shu, / Differential quadrature and its application in engineering, Springer, London (2000). CrossRef
    36. C. M. Wang, V. B. C. Tan and Y. Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, / J. Sound Vib., 294 (2006) 1060-065. CrossRef
    37. L. L. Ke and Y. S. Wang, Flow-inducedvibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory, / Physica E, 43 (2011) 1031-039. CrossRef
  • 作者单位:A. Ghorbanpour Arani (1) (2)
    M. R. Bagheri (1)
    R. Kolahchi (1)
    Z. Khoddami Maraghi (1)

    1. Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
    2. Institute of Nanoscience & Nanotechnology, University of Kashan, Kashan, Iran
  • ISSN:1976-3824
文摘
Nonlinear free vibration and instability of fluid-conveying double-walled boron nitride nanotubes (DWBNNTs) embedded in viscoelastic medium are studied in this paper. The effects of the transverse shear deformation and rotary inertia are considered by utilizing the Timoshenko beam theory. The size effect is applied by the modified couple stress theory and considering a material length scale parameter for beam model. The nonlinear effect is considered by the Von Kármán type geometric nonlinearity. The electromechanical coupling and charge equation are employed to consider the piezoelectric effect. The surrounding viscoelastic medium is described as the linear visco-Pasternak foundation model characterized by the spring and damper. Hamilton’s principle is used to derive the governing equations and boundary conditions. The differential quadrature method (DQM) is employed to discretize the nonlinear higher-order governing equations, which are then solved by a direct iterative method to obtain the nonlinear vibration frequency and critical fluid velocity of fluid-conveying DWBNNTs with clamped-clamped (C-C) boundary conditions. A detailed parametric study is conducted to elucidate the influences of the small scale coefficient, spring and damping constants of surrounding viscoelastic medium and fluid velocity on the nonlinear free vibration, instability and electric potential distribution of DWBNNTs. This study might be useful for the design and smart control of nano devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700