Categories of partial algebras for critical points between varieties of algebras
详细信息    查看全文
  • 作者:Pierre Gillibert (1)
  • 关键词:Primary ; 08A55 ; Secondary ; 08A30 ; 06A12 ; 03C05 ; partial algebra ; congruence relation ; gamp ; pregamp ; variety of algebras ; critical point ; Condensate Lifting Lemma ; lattice ; congruence ; permutable
  • 刊名:Algebra Universalis
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:71
  • 期:4
  • 页码:299-357
  • 全文大小:
  • 参考文献:1. Baker, K.A.: Equational classes of modular lattices. Pacific J. Math. 28, 9-15 (1969)
    2. Erd?s, P., Hajnal, A., Máté, A., Rado, R.: Combinatorial Set Theory: Partition Relations for Cardinals. Studies in Logic and the Foundations of Mathematics, vol. 106, North-Holland, Amsterdam, (1984)
    3. Gillibert P.: Critical points of pairs of varieties of algebras. Internat. J. Algebra Comput. 19, 1-0 (2009) CrossRef
    4. Gillibert P.: Critical points between varieties generated by subspace lattices of vector spaces. J. Pure Appl. Algebra 214, 1306-318 (2010) CrossRef
    5. Gillibert P.: The possible values of critical points between varieties of lattices. J. Algebra 362, 30-5 (2012) CrossRef
    6. Gillibert, P., Wehrung, F.: From objects to diagrams for ranges of functors. Lecture Notes in Mathematics, vol. 2029, Springer (2011)
    7. Gillibert P., Wehrung F.: An infinite combinatorial statement with a poset parameter. Combinatorica 31, 183-00 (2011) CrossRef
    8. Goodearl K.R., Handelman D.E.: Tensor products of dimension groups and / K 0 of unit-regular rings. Canad. J. Math. 38, 633-58 (1986) CrossRef
    9. Goodearl K.R., Wehrung F.: Representations of distributive semilattices in ideal lattices of various algebraic structure. Algebra Universalis 45, 71-02 (2001) CrossRef
    10. Gr?tzer, G.: Universal Algebra. Van Nostrand, Princeton (1968)
    11. Gr?tzer G., Lakser H., Wehrung F.: Congruence amalgamation of lattices. Acta Sci. Math. (Szeged) 66, 3-2 (2000)
    12. Hajnal, A., Máté, A.: Set mappings, partitions, and chromatic numbers. Logic Colloquium -3 (Bristol, 1973). Studies in Logic and the Foundations of Mathematics, vol. 80, pp. 347-79. North-Holland, Amsterdam, 1975
    13. Huhn A.P.: On the representation of distributive algebraic lattices. I. Acta Sci. Math. (Szeged) 45, 239-46 (1983)
    14. Huhn A.P.: On the representation of distributive algebraic lattices. II. Acta Sci. Math. (Szeged) 53, 3-0 (1989)
    15. Huhn A.P.: On the representation of distributive algebraic lattices. III. Acta Sci. Math. (Szeged) 53, 11-8 (1989)
    16. Jónsson B., Rival I.: Lattice varieties covering the smallest nonmodular lattice variety. Pacific J. Math. 82, 463-78 (1979) CrossRef
    17. Kuratowski C.: Sur une caractérisation des alephs. Fund. Math. 38, 14-7 (1951)
    18. Plo??ica, M.: Separation properties in congruence lattices of lattices. Colloq. Math. 83, 71-4 (2000)
    19. Plo??ica, M.: Dual spaces of some congruence lattices. Topology Appl. 131, 1-4 (2003)
    20. Plo??ica, M.: Relative separation in distributive congruence lattices. Algebra Universalis 52, 313-23 (2004)
    21. Plo??ica, M.: Congruence lattices of lattices with m-permutable congruences. Acta Sci. Math. (Szeged) 74, 23-6 (2008)
    22. Plo??ica, M.: Congruence lifting of semilattice diagrams. Internat. J. Algebra Comput. 19, 911-24 (2009)
    23. Plo??ica, M.: Iterative separation in distributive congruence lattices. Math. Slovaca 59, 221-30 (2009)
    24. Plo??ica M., T?ma J., Wehrung F.: Congruence lattices of free lattices in non-distributive varieties. Colloq. Math. 76, 269-78 (1998)
    25. Pudlák P.: On congruence lattices of lattices. Algebra Universalis 20, 96-14 (1985) CrossRef
    26. R??i?ka, P.: A distributive semilattice not isomorphic to the maximal semilattice quotient of the positive cone of any dimension group, J. Algebra 268, 290-00 (2003)
    27. R??i?ka P.: Free trees and the optimal bound in Wehrung’s theorem, Fund. Math. 198, 217-28 (2008)
    28. R??i?ka P., T?ma J., Wehrung F.: Distributive congruence lattices of congruence-permutable algebras. J. Algebra 311, 96-16 (2007) CrossRef
    29. Schmidt E.T.: Zur Charakterisierung der Kongruenzverb?nde der Verb?nde. Mat. ?asopis Sloven. Akad. Vied 18, 3-0 (1968)
    30. Schmidt E.T.: The ideal lattice of a distributive lattice with 0 is the congruence lattice of a lattice. Acta Sci. Math. (Szeged) 43, 153-68 (1981)
    31. T?ma J.: On the existence of simultaneous representations. Acta Sci. Math. (Szeged) 64, 357-71 (1998)
    32. T?ma J., Wehrung F.: Simultaneous representations of semilattices by lattices with permutable congruences. Internat. J. Algebra Comput. 11, 217-46 (2001) CrossRef
    33. T?ma, J., Wehrung, F.: A survey of recent results on congruence lattices of lattices. Algebra Universalis 48, 439-71 (2002)
    34. T?ma, J., Wehrung, F.: Liftings of diagrams of semilattices by diagrams of dimension groups. Proc. London Math. Soc. (3) 87, 1-8 (2003)
    35. T?ma, J., Wehrung, F.: Congruence lifting of diagrams of finite Boolean semilattices requires large congruence varieties. Internat. J. Algebra Comput. 16, 541-50 (2006)
    36. Wehrung F.: Non-measurability properties of interpolation vector spaces. Israel J. Math. 103, 177-06 (1998) CrossRef
    37. Wehrung F.: A uniform refinement property for congruence lattices. Proc. Amer. Math. Soc. 127, 363-70 (1999) CrossRef
    38. Wehrung F.: Representation of algebraic distributive lattices with \({\aleph}\) compact elements as ideal lattices of regular rings. Publ. Mat. 44, 419-35 (2000) CrossRef
    39. Wehrung F.: A solution to Dilworth’s congruence lattice problem. Adv. Math. 216, 610-25 (2007) CrossRef
    40. Wehrung F.: Poset representations of distributive semilattices. Internat. J. Algebra Comput. 18, 321-56 (2008) CrossRef
    41. Wehrung, F.: Lifting Defects for Nonstable / K 0-theory of Exchange Rings and C*-algebras. Algebr. Represent. Theory 16, 553-89 (2013)
  • 作者单位:Pierre Gillibert (1)

    1. LIAFA, Université Paris Diderot, Paris 7, Case 7014, F-75205, Paris Cedex 13, France
  • ISSN:1420-8911
文摘
We denote by Conc A the \({(\vee, 0)}\) -semilattice of all finitely generated congruences of an algebra A. A lifting of a \({(\vee, 0)}\) -semilattice S is an algebra A such that \({S \cong {\rm Con}_{\rm c} A}\) . The assignment Conc can be extended to a functor. The notion of lifting is generalized to diagrams of \({(\vee, 0)}\) -semilattices. A gamp is a partial algebra endowed with a partial subalgebra together with a semilattice-valued distance; gamps form a category that lends itself to a universal algebraic-type study. The raison d’être of gamps is that any algebra can be approximated by its finite subgamps, even in case it is not locally finite. Let \({\mathcal{V}}\) and \({\mathcal{W}}\) be varieties of algebras (on finite, possibly distinct, similarity types). Let P be a finite lattice. We assume the existence of a combinatorial object, called an \({\aleph_0}\) -lifter of P, of infinite cardinality \({\lambda}\) . Let \({\vec{A}}\) be a P-indexed diagram of finite algebras in \({\mathcal{V}}\) . If \({{\rm Con}_{\rm c} \circ \vec{A}}\) has no partial lifting in the category of gamps of \({\mathcal{W}}\) , then there is an algebra \({A \in \mathcal{V}}\) of cardinality \({\lambda}\) such that Conc A is not isomorphic to Conc B for any \({B \in \mathcal{W}}\) . This makes it possible to generalize several known results. In particular, we prove the following theorem, without assuming that \({\mathcal{W}}\) is locally finite. Let \({\mathcal{V}}\) be locally finite and let \({\mathcal{W}}\) be congruence-proper (i.e., congruence lattices of infinite members of \({\mathcal{W}}\) are infinite). The following equivalence holds. Every countable \({(\vee, 0)}\) -semilattice with a lifting in \({\mathcal{V}}\) has a lifting in \({\mathcal{W}}\) if and only if every \({\omega}\) -indexed diagram of finite \({(\vee, 0)}\) -semilattices with a lifting in \({\mathcal{V}}\) has a lifting in \({\mathcal{W}}\) . Gamps are also applied to the study of congruence-preserving extensions. Let \({\mathcal{V}}\) be a non-semidistributive variety of lattices and let n ≥? be an integer. There is a bounded lattice \({A \in \mathcal{V}}\) of cardinality \({\aleph_1}\) with no congruence n-permutable, congruence-preserving extension. The lattice A is constructed as a condensate of a square-indexed diagram of lattices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700