Elucidating the fuzziness in physician decision making in ARDS
详细信息    查看全文
  • 作者:David B. Bernstein (1) <br> Binh Nguyen (2) (3) <br> Gilman B. Allen (2) (3) <br> Jason H. T. Bates (1) (3) <br>
  • 关键词:Acute respiratory distress syndrome ; Mechanical ventilation ; Fuzzy logic ; Low tidal volume ventilation ; Clinical decision making
  • 刊名:Journal of Clinical Monitoring and Computing
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:27
  • 期:3
  • 页码:357-363
  • 全文大小:351KB
  • 参考文献:1. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301-. CrossRef <br> 2. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347-4. CrossRef <br> 3. Holcomb BW, Wheeler AP, Ely EW. New ways to reduce unnecessary variation and improve outcomes in the intensive care unit. Curr Opin Crit Care. 2001;7:304-1. CrossRef <br> 4. Kallet RH. Evidence-based management of acute lung injury and acute respiratory distress syndrome. Respir Care. 2004;49:793-09. <br> 5. Guyatt G, Cairns J, Churchill D, et al. Evidence-based medicine. A new approach to teaching the practice of medicine. JAMA. 1992;268:2420-. CrossRef <br> 6. Pronovost PJ, Rinke ML, Emery K, Dennison C, Blackledge C, Berenholtz SM. Interventions to reduce mortality among patients treated in intensive care units. J Crit Care. 2004;19:158-4. CrossRef <br> 7. Dennison CR, Mendez-Tellez PA, Wang W, Pronovost PJ, Needham DM. Barriers to low tidal volume ventilation in acute respiratory distress syndrome: survey development, validation, and results. Crit Care Med. 2007;35:2747-4. CrossRef <br> 8. Steinberg KP, Kacmarek RM. Respiratory controversies in the critical care setting. Should tidal volume be 6?mL/kg predicted body weight in virtually all patients with acute respiratory failure? Respir Care. 2007;52:556-4. Discussion 565-57. <br> 9. Mikkelsen ME, Dedhiya PM, Kalhan R, Gallop RJ, Lanken PN, Fuchs BD. Potential reasons why physicians underuse lung-protective ventilation: a retrospective cohort study using physician documentation. Respir Care. 2008;53:455-1. <br> 10. Rubenfeld GD, Cooper C, Carter G, Thompson BT, Hudson LD. Barriers to providing lung-protective ventilation to patients with acute lung injury. Crit Care Med. 2004;32:1289-3. CrossRef <br> 11. Kohn LT, Corrigan J, Donaldson MS. To err is human : building a safer health system. Washington, D.C.: National Academy Press; 2000. <br> 12. Nemoto T, Hatzakis GE, Thorpe CW, Olivenstein R, Dial S, Bates JH. Automatic control of pressure support mechanical ventilation using fuzzy logic. Am J Respir Crit Care Med. 1999;160:550-. CrossRef <br> 13. Bates JH, Young MP. Applying fuzzy logic to medical decision making in the intensive care unit. Am J Respir Crit Care Med. 2003;167:948-2. CrossRef <br> 14. Nguyen HT, Walker E. A first course in fuzzy logic. Boca Raton, FL: Chapman & Hall/CRC; 2006. <br> 15. Zadeh LA. Fuzzy sets. Inf Control. 1965;8:338. CrossRef <br> 16. Steimann F. On the use and usefulness of fuzzy sets in medical AI. Artif Intell Med. 2001;21:131-. CrossRef <br> 17. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353:1685-3. CrossRef <br> 18. Vasudevan A, Lodha R, Kabra SK. Acute lung injury and acute respiratory distress syndrome. Indian J Pediatr. 2004;71:743-0. CrossRef <br> 19. Khemani RG, Sward K, Morris A, Dean JM, Newth CJ. Variability in usual care mechanical ventilation for pediatric acute lung injury: the potential benefit of a lung protective computer protocol. Intensive Care Med. 2011;37:1840-. CrossRef <br> 20. Mergoni M, Martelli A, Volpi A, Primavera S, Zuccoli P, Rossi A. Impact of positive end-expiratory pressure on chest wall and lung pressure-volume curve in acute respiratory failure. Am J Respir Crit Care Med. 1997;156:846-4. CrossRef <br> 21. Lutch JS, Murray JF. Continuous positive-pressure ventilation: effects on systemic oxygen transport and tissue oxygenation. Ann Intern Med. 1972;76:193-02. CrossRef <br> 22. Hawker FH, Torzillo PJ, Southee AE. PEEP and “reverse mismatch- A case where less PEEP is best. Chest. 1991;99:1034-. CrossRef <br> 23. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327-6. CrossRef <br> 24. Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, Lefrant JY, Prat G, Richecoeur J, Nieszkowska A, Gervais C, Baudot J, Bouadma L, Brochard L. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:646-5. CrossRef <br> 25. Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A, Novack V, Loring SH. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359:2095-04. CrossRef <br> 26. Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R, Bugedo G. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354:1775-6. CrossRef <br> 27. Allerod C, Karbing DS, Thorgaard P, Andreassen S, Kjaergaard S, Rees SE Variability of preference toward mechanical ventilator settings: a model-based behavioral analysis. J Crit Care. 2011;26:637 e635-37 e612. <br>
  • 作者单位:David B. Bernstein (1) <br> Binh Nguyen (2) (3) <br> Gilman B. Allen (2) (3) <br> Jason H. T. Bates (1) (3) <br><br>1. School of Engineering, University of Vermont, 149 Beaumont Avenue, HSRF 228, Burlington, VT, 05405-0075, USA <br> 2. Fletcher Allen Health Care, Burlington, VT, 05405, USA <br> 3. Department of Medicine, University of Vermont, Burlington, VT, 05405, USA <br>
  • ISSN:1573-2614
文摘
The current standard of care for patients suffering from acute respiratory distress syndrome (ARDS) is ventilation with a tidal volume of 6?ml/kg predicted body weight (PBW), but variability remains in the tidal volumes that are actually used. This study aims to identify patient scenarios for which there is discordance between physicians in choice of tidal volume and positive end-expiratory pressure (PEEP) in ARDS patients. We developed an algorithm based on fuzzy logic for encapsulating the expertise of individual physicians regarding their use of tidal volume and PEEP in ARDS patients. The algorithm uses three input measurements: (1) peak airway pressure (PAP), (2) PEEP, and (3) arterial oxygen saturation (SaO2b>). It then generates two output parameters: (1) the deviation of tidal volume from 6?ml/kg PBW, and (2) the change in PEEP from its current value. We captured 6 realizations of intensivist expertise in this algorithm and assessed their degree of concordance using a Monte Carlo simulation. Variability in the tidal volume recommended by the algorithm increased for PAP?>?30?cmH2b>O and PEEP?>?5?cmH2b>O. Tidal volume variability decreased for SaO2b>?>?90?%. Variability in the recommended change in PEEP increased for PEEP?>?5 cmH2b>O and for SaO2b> near 90?%. Intensivists vary in their management of ARDS patients when peak airway pressures and PEEP are high, suggesting that the current goal of 6?ml/kg PBW may need to be revisited under these conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700