Reduced cilia frequencies in human renal cell carcinomas versus neighboring parenchymal tissue
详细信息    查看全文
  • 作者:Sander G Basten (1) (2)
    Sven Willekers (1)
    Joost SP Vermaat (2)
    Gisela GG Slaats (1)
    Emile E Voest (2)
    Paul J van Diest (3)
    Rachel H Giles (1)
  • 关键词:Cilia ; Kidney ; Clear cell renal cell carcinoma ; Chromophobe RCC ; Papillary RCC ; Oncocytoma ; Histology
  • 刊名:Cilia
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:2
  • 期:1
  • 全文大小:454KB
  • 参考文献:1. Singla V: The primary cilium as the cell's antenna: signaling at a sensory organelle. / Science 2006, 313:629-33. CrossRef
    2. Oh EC, Katsanis N: Cilia in vertebrate development and disease. / Development 2012, 139:443-48. CrossRef
    3. Hildebrandt F, Benzing T, Katsanis N: Ciliopathies. / N Engl J Med 2011, 364:1533-543. CrossRef
    4. Waters AM, Beales PL: Ciliopathies: an expanding disease spectrum. / Pediatr Nephrol 2011, 26:1039-056. CrossRef
    5. Wallingford JB, Mitchell B: Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. / Genes Dev 2011, 25:201-13. CrossRef
    6. Lopez-Beltran A, Carrasco JC, Cheng L, Scarpelli M, Kirkali Z, Montironi R: 2009 update on the classification of renal epithelial tumors in adults. / Int J Urol 2009, 16:432-43. CrossRef
    7. Takahashi M, Yang XJ, Sugimura J, Backdahl J, Tretiakova M, Qian C-N, Gray SG, Knapp R, Anema J, Kahnoski R, Nicol D, Vogelzang NJ, Furge KA, Kanayama H, Kagawa S, Teh BT: Molecular subclassification of kidney tumors and the discovery of new diagnostic markers. / Oncogene 2003, 22:6810-818. CrossRef
    8. Yusenko MV: Molecular pathology of chromophobe renal cell carcinoma: a review. / Int J Urol 2010, 17:592-00. CrossRef
    9. Yusenko MV: Molecular pathology of renal oncocytoma: a review. / Int J Urol 2010, 17:602-12. CrossRef
    10. Mans DA, Voest EE, Giles RH: All along the watchtower: is the cilium a tumor suppressor organelle? / Biochim Biophys Acta 2008, 1786:114-25.
    11. Moore LE, Nickerson ML, Brennan P, Toro JR, Jaeger E, Rinsky J, Han SS, Zaridze D, Matveev V, Janout V, Kollarova H, Bencko V, Navratilova M, Szeszenia-Dabrowska N, Mates D, Schmidt LS, Lenz P, Karami S, Linehan WM, Merino M, Chanock S, Boffetta P, Chow W-H, Waldman FM, Rothman N: Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with Germline VHL polymorphisms and etiologic risk factors. / PLoS Genet 2011, 7:e1002312. CrossRef
    12. Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, Choy YS, Reeve MP, Thiele E, Egelhoff JC, Kasprzyk-Obara J, Domanska-Pakiela D, Kwiatkowski DJ: Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. / Am J Hum Genet 2001, 68:64-0. CrossRef
    13. Bonsib SM: Renal cystic diseases and renal neoplasms: a mini-review. / Clin J Am Soc of Nephrol 2009, 4:1998-007. CrossRef
    14. Lim DHK, Rehal PK, Nahorski MS, Macdonald F, Claessens T, van Geel M, Gijezen L, Gille JJP, Giraud S, Richard S, van Steensel M, Menko FH, Maher ER: A new locus-specific database (LSDB) for mutations in the folliculin (FLCN) gene. / Hum Mutat 2010, 31:E1043-E1051. CrossRef
    15. Pavlovich CP, Walther MM, Eyler RA, Hewitt SM, Zbar B, Linehan WM, Merino MJ: Renal tumors in the Birt-Hogg-Dubé syndrome. / Am J Surg Pathol 2002, 26:1542-552. CrossRef
    16. Mandriota SJ, Turner KJ, Davies DR, Murray PG, Morgan NV, Sowter HM, Wykoff CC, Maher ER, Harris AL, Ratcliffe PJ, Maxwell PH: HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. / Cancer Cell 2002, 1:459-68. CrossRef
    17. Fu L, Wang G, Shevchuk MM, Nanus DM, Gudas LJ: Generation of a mouse model of Von Hippel-Lindau kidney disease leading to renal cancers by expression of a constitutively active mutant of HIF1. / Cancer Res 2011, 71:6848-856. CrossRef
    18. Wilson C, Idziaszczyk S, Parry L, Guy C, Griffiths DF, Lazda E, Bayne RA, Smith AJ, Sampson JR, Cheadle JP: A mouse model of tuberous sclerosis 1 showing background specific early post-natal mortality and metastatic renal cell carcinoma. / Hum Mol Genet 2005, 14:1839-850. CrossRef
    19. Baba M, Furihata M, Hong SB, Tessarollo L, Haines DC, Southon E, Patel V, Igarashi P, Alvord WG, Leighty R, Yao M, Bernardo M, Ileva L, Choyke P, Warren MB, Zbar B, Linehan WM, Schmidt LS: Kidney-targeted Birt-Hogg-Dube gene inactivation in a mouse model: Erk1/2 and Akt-mTOR activation, cell hyperproliferation, and polycystic kidneys. / J Natl Cancer Inst 2008, 100:140-54. CrossRef
    20. Bettencourt-Dias M, Hildebrandt F, Pellman D, Woods G, Godinho SA: Centrosomes and cilia in human disease. / Trends Genet 2011, 27:307-15. CrossRef
    21. Nigg EA, Stearns T: The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. / Nat Cell Biol 2011, 13:1154-160. CrossRef
    22. Schraml P, Frew IJ, Thoma CR, Boysen G, Struckmann K, Krek W, Moch H: Sporadic clear cell renal cell carcinoma but not the papillary type is characterized by severely reduced frequency of primary cilia. / Mod Pathol 2008, 22:31-6. CrossRef
    23. Kroeze SGC, Vermaat JS, van Brussel A, van Melick HHE, Voest EE, Jonges TGN, van Diest PJ, Hinrichs J, Bosch JLHR, Jans JJM: Expression of nuclear FIH independently predicts overall survival of clear cell renal cell carcinoma patients. / Eur J Cancer 2010, 46:3375-382. CrossRef
    24. van der Ven K, Nguyen TQ, Goldschmeding R: Immunofluorescence on proteinase XXIV-digested paraffin sections. / Kidney Int 2007, 72:896. CrossRef
    25. Aperio ImageScope http://www.aperio.com
    26. Santos N, Reiter JF: Building it up and taking it down: the regulation of vertebrate ciliogenesis. / Dev Dyn 2008, 237:1972-981. CrossRef
    27. Kim J, Dabiri S, Seeley ES: Primary cilium depletion typifies cutaneous melanoma in situ and malignant melanoma. / PLoS ONE 2011, 6:e27410. CrossRef
    28. Seeley ES, Carrière C, Goetze T, Longnecker DS, Korc M: Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. / Cancer Res 2009, 69:422-30. CrossRef
    29. Wong SY, Seol AD, So P-L, Ermilov AN, Bichakjian CK, Epstein EH, Dlugosz AA, Reiter JF: Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. / Nat Med 2009, 15:1055-061. CrossRef
    30. Han Y-G, Kim HJ, Dlugosz AA, Ellison DW, Gilbertson RJ, Alvarez-Buylla A: Dual and opposing roles of primary cilia in medulloblastoma development. / Nat Med 2009, 15:1062-065. CrossRef
    31. Lolkema MP, Mans DA, Snijckers CM, van Noort M, van Beest M, Voest EE, Giles RH: The von Hippel-Lindau tumour suppressor interacts with microtubules through kinesin-2. / FEBS Letters 2007, 581:4571-576. CrossRef
    32. Frew IJ, Thoma CR, Georgiev S, Minola A, Hitz M, Montani M, Moch H, Krek W: pVHL and PTEN tumour suppressor proteins cooperatively suppress kidney cyst formation. / EMBO J 2008, 27:1747-757. CrossRef
    33. Thoma CRC, Frew IJI, Krek WW: The VHL tumor suppressor: riding tandem with GSK3beta in primary cilium maintenance. / Cell Cycle 2007, 6:1809-813. CrossRef
    34. Tee AR, Pause A: Birt-Hogg-Dubé: tumour suppressor function and signalling dynamics central to folliculin. / Fam Cancer 2012. [Epub ahead of print]
    35. Basten SG, Haidari K, Slaats G, van Steensel M, Giles R: 3D renal modeling classifies BHD as a ciliopathy, possibly responsive to treatment with PTC124. / Cilia 2012, (Suppl 1):82.
    36. Hartman TR, Liu D, Zilfou JT, Robb V, Morrison T, Watnick T, Henske EP: The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. / Hum Mol Genet 2008, 18:151-63. CrossRef
    37. Linehan WM, Srinivasan R, Schmidt LS: The genetic basis of kidney cancer: a metabolic disease. / Nat Rev Urol 2010, 7:277-85. CrossRef
    38. Kaelin WG: Molecular basis of the VHL hereditary cancer syndrome. / Nat Rev Cancer 2002, 2:673-82. CrossRef
    39. Yuan S, Li J, Diener DR, Choma MA, Rosenbaum JL, Sun Z: Target-of-rapamycin complex 1 (Torc1) signaling modulates cilia size and function through protein synthesis regulation. / Proc Natl Acad of Sci USA 2012, 109:2021-026. CrossRef
    40. Boehlke C, Kotsis F, Patel V, Braeg S, Voelker H, Bredt S, Beyer T, Janusch H, Hamann C, G?del M, Müller K, Herbst M, Hornung M, Doerken M, K?ttgen M, Nitschke R, Igarashi P, Walz G, Kuehn EW: Primary cilia regulate mTORC1 activity and cell size through Lkb1. / Nat Cell Biol 2010, 12:1115-122. CrossRef
    41. Hassounah NB, Bunch TA, McDermott KM: Molecular pathways: the role of primary cilia in cancer progression and therapeutics with a focus on hedgehog signaling. / Clin Cancer Res 2012, 18:2429-435. CrossRef
  • 作者单位:Sander G Basten (1) (2)
    Sven Willekers (1)
    Joost SP Vermaat (2)
    Gisela GG Slaats (1)
    Emile E Voest (2)
    Paul J van Diest (3)
    Rachel H Giles (1)

    1. Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
    2. Department of Medical Oncology, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands
    3. Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
文摘
Background Cilia are essential organelles in multiple organ systems, including the kidney where they serve as important regulators of renal homeostasis. Renal nephron cilia emanate from the apical membrane of epithelia, extending into the lumen where they function in flow-sensing and ligand-dependent signaling cascades. Ciliary dysfunction underlies renal cyst formation that is in part caused by deregulation of planar cell polarity and canonical Wnt signaling. Renal cancer pathologies occur sporadically or in heritable syndromes caused by germline mutations in tumor suppressor genes including VHL. Importantly, Von Hippel-Lindau (VHL) patients frequently develop complex renal cysts that can be considered a premalignant stage. One of the well-characterized molecular functions of VHL is its requirement for the maintenance of cilia. In this study, tissue from 110 renal cancer patients who underwent nephrectomy was analyzed to determine if lower ciliary frequency is a common hallmark of renal tumorigenesis by comparing cilia frequencies in both tumor and adjacent parenchymal tissue biopsies from the same kidney. Methods We stained sections of human renal material using markers for cilia. Preliminary staining was performed using an immunofluorescent approach and a combination of acetylated-α-tubulin and pericentrin antibodies and DAPI. After validation of an alternative, higher throughput approach using acetylated-α-tubulin immunohistochemistry, we continued to manually quantify cilia in all tissues. Nuclei were separately counted in an automated fashion in order to determine ciliary frequencies. Similar staining and scoring for Ki67 positive cells was performed to exclude that proliferation obscures cilia formation potential. Results Samples from renal cell carcinoma patients deposited in our hospital tissue bank were previously used to compose a tissue microarray containing three cores of both tumor and parenchymal tissue per patient. Cilia frequencies in a total of eighty-nine clear cell, eight papillary, five chromophobe renal cell carcinomas, two sarcomatoid renal tumors and six oncocytomas were determined. A marked decrease of primary cilia across renal cell carcinoma subtypes was observed compared to adjacent nontumorigenic tissue. Conclusions Our study shows that cilia are predominantly lost in renal cell carcinomas compared to tissue of the tumor parenchyma. These results suggest that ciliary loss is common in renal tumorigenesis, possibly participating in the sequence of cellular events leading to malignant tumor development. Future therapies aimed at restoring or circumventing cilia signaling might therefore aid in current treatment efficacy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700