Extreme points, support points and the Loewner variation in several complex variables
详细信息    查看全文
  • 作者:Ian Graham (1) graham@math.toronto.edu
    Hidetaka Hamada (2) h.hamada@ip.kyusan-u.ac.jp
    Gabriela Kohr (3) gkohr@math.ubbcluj.ro
    Mirela Kohr (3) mkohr@math.ubbcluj.ro
  • 关键词:biholomorphic mapping – Loewner chain – parametric representation – reachable set – starlike mapping
  • 刊名:SCIENCE CHINA Mathematics
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:55
  • 期:7
  • 页码:1353-1366
  • 全文大小:278.0 KB
  • 参考文献:1. Bonsall F F, Duncan J. Numerical Ranges. II. Cambridge: Cambridge University Press, 1973
    2. Brickman L, Wilken D R. Support points of the set of univalent functions. Proc Amer Math Soc, 1974, 42: 523–528
    3. Elin M. Extension operators via semigroups. J Math Anal Appl, 2011, 377: 239–250
    4. Friedland S, Schiffer M. On coefficient regions of univalent functions. J Anal Math, 1977, 31: 125–168
    5. Gong S, Liu, T. On the Roper-Suffridge extension operator. J Anal Math, 2002, 88: 397–404
    6. Gong S, Liu T. The generalized Roper-Suffridge extension operator. J Math Anal Appl, 2003, 284: 425–434
    7. Graham I, Hamada H, Kohr G. Parametric representation of univalent mappings in several complex variables. Canadian J Math, 2002, 54: 324–351
    8. Graham I, Hamada H, Kohr G. Extension operators and subordination chains. J Math Anal Appl, 2012, 386: 278–289
    9. Graham I, Hamada H, Kohr G, et al. Asymptotically spirallike mappings in several complex variables. J Anal Math, 2008, 105: 267–302
    10. Graham I, Hamada H, Kohr G, et al. Parametric representation and asymptotic starlikeness in ?n. Proc AmerMath Soc, 2008, 136: 3963–3973
    11. Graham I, Kohr G. Univalent mappings associated with the Roper-Suffridge extension operator. J Anal Math, 2000, 81: 331–342
    12. Graham I, Kohr G. Geometric Function Theory in One and Higher Dimensions. New York: Marcel Dekker Inc, 2003
    13. Graham I, Kohr G, Kohr M. Loewner chains and the Roper-Suffridge extension operator. J Math Anal Appl, 2000, 247: 448–465
    14. Graham I, Kohr G, Kohr M. Loewner chains and parametric representation in several complex variables. J Math Anal Appl, 2003, 281: 425–438
    15. Graham I, Kohr G, Pfaltzgraff J A. Parametric representation and linear functionals associated with extension operators for biholomorphic mappings. Rev Roumaine Math Pures Appl, 2007, 52: 47–68
    16. Hallenbeck D J, MacGregor T H. Linear Problems and Convexity Techniques in Geometric Function Theory. Boston: Pitman, 1984
    17. Hamada H. Polynomially bounded solutions to the Loewner differential equation in several complex variables. J Math Anal Appl, 2011, 381: 179–186
    18. Hamada H, Kohr G. On some classes of bounded univalent mappings in several complex variables. Manuscripta Math, 2010, 131: 487–502
    19. Harris L. The numerical range of holomorphic functions in Banach spaces. Amer J Math, 1971, 93: 1005–1019
    20. Kirwan W E. Extremal properties of slit conformal mappings. In: Brannan D, Clunie J, eds. Aspects of Contemporary Complex Analysis, 439–449. London-New York: Academic Press, 1980
    21. Kirwan W E. Schober G. New inequalities from old ones. Math Z, 1982, 180: 19–40
    22. Liu T, Xu Q H. Loewner chains associated with the generalized Roper-Suffridge extension operator. J Math Anal Appl, 2006, 322: 107–120
    23. MacGregor T H, Wilken D R. Extreme points and support points. In: Kühnau R, ed., Handbook of Complex Analysis: Geometric Function Theory. vol. I. New York: Elservier, 2002, 371–392
    24. Muir J R. A class of Loewner chain preserving extension operators. J Math Anal Appl, 2008, 337: 862–879
    25. Pell R. Support point functions and the Loewner variation. Pacific J Math, 1980, 86: 561–564
    26. Pfaltzgraff J A. Subordination chains and univalence of holomorphic mappings in ?n. Math Ann, 1974, 210: 55–68
    27. Pfaltzgraff J A, Suffridge T J. An extension theorem and linear invariant families generated by starlike maps. Ann Univ Mariae Curie Skl Sect A, 1999, 53: 193–207
    28. Pfluger A. Lineare extremal probleme bei schlichten funktionen. Ann Acad Sci Fenn Ser A I, 1971, 489, 32
    29. Pommerenke Ch. über die subordination analytischer funktionen. J Reine Angew Math, 1965, 218: 159–173
    30. Pommerenke Ch. Univalent Functions. G?ttingen: Vandenhoeck & Ruprecht, 1975
    31. Poreda T. On the univalent holomorphic maps of the unit polydisc in ?n which have the parametric representation, I-the geometrical properties. Ann Univ Mariae Curie Skl Sect A, 1987, 41: 105–113
    32. Poreda T. On the univalent holomorphic maps of the unit polydisc in ?n which have the parametric representation, II-the necessary conditions and the sufficient conditions. Ann Univ Mariae Curie Skl Sect A, 1987, 41: 115–121
    33. Prokhorov D V. Bounded univalent functions. In: Kühnau R ed. Handbook of Complex Analysis: Geometric Function Theory. vol. I. New York: Elservier, 2002, 207–228
    34. Roper K, Suffridge T J. Convex mappings on the unit ball of ?n. J Anal Math, 1995, 65: 333–347
    35. Roth O. Control theory in . Ph.D. Dissertation. Wüerzburg: Dayerischen University Wüerzburg, 1998
    36. Roth O. A remark on the Loewner differential equation. Comput Methods and Function Theory Ser Approx Decompos, 1997, 11, 461–469, NJ: World Sci Publ River Edge, 1999
    37. Tammi O. Extremum Problems for Bounded Univalent Functions. Lecture Notes Math, vol. 646. New York: Springer-Verlag, 1978
    38. Zhu Y, Liu M. Loewner chains associated with the generalized Roper-Suffridge extension operator on some domains. J Math Anal Appl, 2008, 337: 949–961
  • 作者单位:1. Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada2. Faculty of Engineering, Kyushu Sangyo University, 3-1 Matsukadai 2-Chome, Higashi-ku Fukuoka, 8138503 Japan3. Faculty of Mathematics and Computer Science, Babe?-Bolyai University, 1 M. Kog?lniceanu Str., Cluj-Napoca, 400084 Romania
  • ISSN:1869-1862
文摘
In this paper we consider extreme points and support points for compact subclasses of normalized biholomorphic mappings of the Euclidean unit ball B n in ? n . We consider the class S 0(B n ) of biholomorphic mappings on B n which have parametric representation, i.e., they are the initial elements f(·, 0) of a Loewner chain f(z, t) = e t z + … such that {e?t f(·, t)} t?0 is a normal family on B n . We show that if f(·, 0) is an extreme point (respectively a support point) of S 0(B n ), then e ?t f(·, t) is an extreme point of S 0(B n ) for t ? 0 (respectively a support point of S 0(B n ) for t ∈ [0,t 0] and some t 0 > 0). This is a generalization to the n-dimensional case of work due to Pell. Also, we prove analogous results for mappings which belong to S 0(B n ) and which are bounded in the norm by a fixed constant. We relate the study of this class to reachable sets in control theory generalizing work of Roth. Finally we consider extreme points and support points for biholomorphic mappings of B n generated by using extension operators that preserve Loewner chains.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700