Land response to atmosphere at different resolutions in the common land model over East Asia
详细信息    查看全文
  • 作者:Daeun Kim ; Yoon-Jin Lim ; Minseok Kang ; Minha Choi
  • 刊名:Advances in Atmospheric Sciences
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:33
  • 期:3
  • 页码:391-408
  • 全文大小:3,257 KB
  • 参考文献:Abramowitz, G., R. Leuning, M. Clark, and A. Pitman, 2008: Evaluating the performance of land surface models. J. Climate, 21, 5468–5481.CrossRef
    Admiral, S. W., P. M. Lafleur, and N. T. Roulet, 2006: Controls on latent heat flux and energy partitioning at a peat bog in eastern Canada. Agricultural and Forest Meteorology, 140, 308–321.CrossRef
    Andersen, T. K., D. E. Radcliffe, and J. M. Shepherd, 2013: Quantifying surface energy fluxes in the vicinity of inland-tracking tropical cyclones. Journal Applied Meteorology and Climatology, 52, 2797–2808.CrossRef
    Arora, V., 2002: Modeling vegetation as a dynamic component in soil–vegetation–atmosphere transfer schemes and hydrological models. Rev. Geophys., 40, 3-1–26. AsiaFlux website, cited 2013: Site information. [Available online at http://​www.​Asiafluxnet/​.​Accessed 20 Oct 2013]CrossRef
    Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 2415–2434.CrossRef
    Betts, R. A., P. M. Cox, and F. I. Woodward, 2000: Simulated responses of potential vegetation to doubled-CO2 climate change and feedbacks on near-surface temperature. Global Ecology and Biogeography, 9, 171–180.CrossRef
    Betts, A. K., R. L. Desjardins, and D.Worth, 2007: Impact of agriculture, forest and cloud feedback on the surface energy budget in BOREAS. Agricultural and Forest Meteorology, 142, 156–169.CrossRef
    Beven, K. J., and M. J. Kirkby, 1979: A physically based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24, 43–69.CrossRef
    Brutsaert, W., 1982: Evaporation into the Atmosphere: Theory, History, and Applications. Springer, 299.CrossRef
    Carlson, D. W. and A. Groot, 1997: Microclimate of clear-cut, forest interior, and small openings in trembling aspen forest. Agric. For. Meteorol., 87, 313–329.CrossRef
    Charney, J. G., 1975: Dynamics of deserts and drought in the Sahel. Quart. J. Roy. Meteor. Soc., 101, 193–202.CrossRef
    Chen, F., and Coauthors, 1996: Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 7251–7268.CrossRef
    Chen, Y. Y., K. Yang, D. G. Zhou, J. Qin, and X. F. Guo, 2010: Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. Journal of Hydrometeorology, 11, 995–1006.CrossRef
    Choi, M., S. O. Lee, and H. Kwon, 2010: Understanding of the Common Land Model performance for water and energy fluxes in a farmland during the growing season in Korea. Hydrological Processes, 24, 1063–1071.CrossRef
    Choi, M., and Y. Hur, 2012: A microwave-optical/infrared disaggregation for improving spatial representation of soil moisture using AMSR-E and MODIS products. Remote Sensing of Environment, 124, 259–269.CrossRef
    Choi, M., W. P. Kustas, and R. L. Ray, 2012: Evapotranspiration models of different complexity for multiple land cover types. Hydrological Processes, 26, 2962–2972.CrossRef
    Chun, J. A., R. A. Cooke, M. S. Kang, M. Choi, D. Timlin, and S. W. Park, 2010: Runoff losses of suspended sediment, nitrogen, and phosphorus from a small watershed in Korea. Journal of Environment Quality, 39, 981–990.CrossRef
    Clapp, R. B., and G. M. Hornberger, 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14, 601–604.CrossRef
    Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration:A model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54, 107–136.CrossRef
    Comer, N. T., P. M. Lafleur, N. T. Roulet, M. G. Letts, M. Skarupa, and D. Verseghy, 2000: A test of the Canadian Land Surface Scheme (CLASS) for a variety of wetland types. Atmos.-Ocean, 38, 161–179.CrossRef
    Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.CrossRef
    Dai, Y. J., and Q. C. Zeng, 1997: A land surface model (IAP94) for climate studies part I: Formulation and validation in off-line experiments. Adv. Atmos. Sci., 14, 433–460, doi: 10.1007/s00376-997-0063-4.CrossRef
    Dai, Y. J., X. Zeng, and R. E. Dickinson, 2001: The Common Land Model (CLM): Technical documentation and user’s guide. Georgia Institute of Technology, Atlanta.
    Dai, Y. J., and Coauthors, 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1023.CrossRef
    Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR Technical Note NCAR/TN-387+STR.
    Dickinson, R. E., M. Shaikh, R. Bryant, and L. Graumlich, 1998: Interactive canopies for a climate model. J. Climate, 11, 2823–2836.CrossRef
    Famiglietti, J. S., and J. S. Wood, 1994: Application of multiscale water and energy balance models on a tallgrass prairie. Water Resour. Res., 30, 3079–3093.CrossRef
    Farouki, O. T., 1981: Thermal properties of soils. United States Army Cold Regions Research and Engineering Laboratory, Monograph No. 81-1, 136 pp. Forest news website, cited 2013: Site information. [Available online at http://​wwwsanlimkr/​.​]
    Friedlingstein, P., J.-L. Dufresne, P. M. Cox, and P. Rayner, 2003: How positive is the feedback between climate change and the carbon cycle? Tellus B, 55, 692–700.CrossRef
    Hong, J., H. C. Lee, J. Kim, B. Kim, C. Cho, and S. Lee, 2003: Inferring regional scale surface heat flux around FK Koflux site: From one point tower measurement to MM5 mesoscale model. Korean Journal of Agricultural and Forest Meteorology, 5, 138–149. (in Korean)
    Hong, J., and J. Kim, 2010: Numerical study of surface energy partitioning on the Tibetan plateau: Comparative analysis of two biosphere models. Biogeosciences, 7, 557–568.CrossRef
    Huang, C. L., X. H. Li, J. M. Wang, and J. Gu, 2008: Assimilation of remote sensing data products into Common Land Model for evapotranspiration forecasting. Proc. 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Shanghai, China: World Academic Union, 234–241.
    Jackson, T. J., and Coauthors, 2010: Validation of advanced microwave scanning radiometer soil moisture products. IEEE Trans. Geosci. Remote Sens., 48, 4256–4272.CrossRef
    Jang, K., S. Kang, Y. J. Lim, S. Jeong, J. Kim, J. S. Kimball, and S. Y. Hong, 2013: Monitoring daily evapotranspiration in Northeast Asia using MODIS and a regional Land Data Assimilation System. J. Geophys. Res., 118, 12927–12940.
    Jones, A. R., and N. B. Brunsell, 2009: Energy balance partitioning and net radiation controls on soil moisture-precipitation feedbacks. Earth Interactions, 13, 1–25.CrossRef
    Katul, G., C.-I. Hsieh, R. Oren, D. Ellsworth, and N. Phillips, 1996: Latent and sensible heat flux predictions from a uniform pine forest using surface renewal and flux variance methods. Bound.–Layer Meteor., 80, 249–282.
    Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Technical Note NCAR/TN-420+STR, Note 152.
    Koster, R. D., and M. J. Suarez, 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res.: Atmos., 97, 2697–2715.CrossRef
    Kwon, H., T.–Y. Park, J. Hong, J.–H. Lim, and J. Kim, 2009: Seasonality of net ecosystem carbon exchange in two major plant functional types in Korea. Asia-Pacific Journal of Atmospheric Sciences, 45, 149–163.
    Lei, H. M., D. W. Yang, Y. J. Shen, Y. Liu, and Y. C. Zhang, 2011: Simulation of evapotranspiration and carbon dioxide flux in the wheat-maize rotation croplands of the North China Plain using the Simple Biosphere Model. Hydrological Processes, 25, 3107–3120.CrossRef
    LeMone, M. A., F. Chen, J. G. Alfieri, M. Tewari, B. Geerts, Q. Miao, R. L. Grossman, and R. L. Coulter, 2007: Influence of land cover and soil moisture on the horizontal distribution of sensible and latent heat fluxes in southeast Kansas during IHOP 2002 and CASES-97. Journal of Hydrometeorology, 8, 68–87.CrossRef
    Li, Z.–C., Z.–G. Wei, C. Wang, Z.–Y. Zheng, H. Wei, and H. Liu, 2012: Simulation and improvement of common land model on the bare soil of Loess Plateau underlying surface. Environmental Earth Sciences, 66, 1091–1097.CrossRef
    Liang, X., F. W. Eric, and D. P. Lettenmaier, 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global and Planetary Change, 13, 195–206.CrossRef
    Liang, X.–Z., H. I. Choi, K. E. Kunkel, Y. J. Dai, E. Joseph, J. X. L. Wang, and P. Kumar, 2005: Surface boundary conditions for mesoscale regional climate models. Earth Interactions, 9, 1–28.CrossRef
    Liebethal, C., B. Huwe, and T. Foken, 2005: Sensitivity analysis for two ground heat flux calculation approaches. Agricultural and Forest Meteorology, 132, 253–262.CrossRef
    Lim, Y.-J., K.-Y. Byun, T.-Y. Lee, and J. Kim, 2010: Evaluation of evapotranspiration using Korea Land Data Assimilation System. Korean Journal of Agricultural and Forest Meteorology, 12, 298–306.CrossRef
    Lim, Y.–J., K.–Y. Byun, T.–Y. Lee, H. Kwon, J. Hong, and J. Kim, 2012: A land data assimilation system using the MODISderived land data and its application to numerical weather prediction in East Asia. Asia-Pacific Journal of Atmospheric Sciences, 48, 83–95.CrossRef
    Matumoto, K., and Coauthors, 2008: Energy consumption and evapotranspiration at several boreal and temperate forests in the Far East. Agricultural and Forest Meteorology, 148, 1978–1989.CrossRef
    Meng, C. L., Z.–L. Li, X. Zhan, J. C. Shi, and C. Y. Liu, 2009: Land surface temperature data assimilation and its impact on evapotranspiration estimates from the Common Land Model. Water Resour. Res., 45, W02421.
    Mizutani, K., K. Yamanoi, T. Ikeda, and T. Watanabe, 1997: Applicability of the eddy correlation method to measure sensible heat transfer to forest under rainfall conditions. Agricultural and Forest Meteorology, 86, 193–203.CrossRef
    Niu, G. Y., and Z. L. Yang, 2006: Assessing a land surface model’s improvements with GRACE estimates}. Geophys. Res. Lett.,} 33}, L0CrossRef
    Ohring, G., and P. Clapp, 1980: The effect of changes in cloud amount on the net radiation at the top of the atmosphere. J. Atmos. Sci., 37, 447–454.CrossRef
    Oliver, S. A., H. R. Oliver, J. S.Wallace, and A. M. Roberts, 1987: Soil heat flux and temperature variation with vegetation, soil type and climate. Agricultural and Forest Meteorology, 39, 257–269.CrossRef
    Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Riv. Geophys., 39, 151–177.CrossRef
    Reshmidevi, T. V., R. Jana, and T. I. Eldho, 2008: Geospatial estimation of soil moisture in rain-fed paddy fields using SCSCN-based model. Agricultural Water Management, 95, 447–457.CrossRef
    Rihani, J. F., R. M. Maxwell, and F. K. Chow, 2010: Coupling groundwater and land surface processes: Idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes. Water Resour. Res., 46, W12523.
    Rodell, M., and Coauthors, 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381–394.CrossRef
    Sellers, P. J., and Coauthors, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9, 676–705.
    Seneviratne, S. I., and R. Stöckli, 2006: J. Luterbacher, T. Ewen, H. F. Diaz, R. S. Stolarski, and U. Neu}, Eds., Springer, 33}, 179–

Seuffert, G., P. Gross, and C. Simmer, 2002: The influence of hydrologic modeling on the predicted local weather: Two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model. Journal of Hydrometeorology, 3, 505–523.CrossRef
Shi, T. T., D. X. Guan, A. Z. Wang, J. B. Wu, C. J. Jin, and S. J. Han, 2008: Comparison of three models to estimate evapotranspiration for a temperate mixed forest. Hydrological Processes, 22, 3431–3443.CrossRef
Stöckli, R., and Coauthors, 2008: Use of FLUXNET in the Community Land Model development. J. Geophys. Res., 113, G01025.
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram}. J. Geophys. Res.,} 106}, 7183–CrossRef
Tessy Chacko, P., and G. Renuka, 2002: Temperature mapping, thermal diffusivity and subsoil heat flux at Kariavattom of Kerala. Journal of Earth System Science, 111, 79–85.CrossRef
Wang, Y. P., and P. G. Jarvis, 1990: Description and validation of an array model-MAESTRO. Agricultural and Forest Meteorology, 51, 257–280.CrossRef
Whitfield, B., J. M. Jacobs, and J. Judge, 2006: Intercomparison study of the land surface process model and the common land model for a Prairie Wetland in Florida. Journal of Hydrometeorology, 7, 1247–1258.CrossRef
Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127–150.CrossRef
Winter, J. M., and E. A. B. Eltahir, 2010: The sensitivity of latent heat flux to changes in the Radiative Forcing: A framework for comparing models and observations. J. Climate, 23, 2345–2356.CrossRef
Xiu, A., and J. E. Pleim, 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteor., 40, 192–209.CrossRef
Yang, K., T. Watanabe, T. Koike, X. Li, H. Fujii, K. Tamagawa, Y. Ma, and H. Ishikawa, 2007: Auto-calibration system developed to assimilate AMSR-E data into a Land Surface Model for estimating soil moisture and the surface energy budget. J. Meteor. Soc. Japan, 85A, 229–242.
Ye, B., D. Yang, and L. Ma, 2012: Effect of precipitation bias correction on water budget calculation in Upper Yellow River, China. Environ. Res. Lett., 7, 025201.CrossRef
Zou, L., W. Gao, T. Wu, Q. Lu, and Y. Zhang, 2008: Numerical simulation by the Common Land Model (CLM) of the soil moisture over China during the summer of 2006. In Optical Engineering+Applications, 708 314–708 314.
  • 作者单位:Daeun Kim (1)
    Yoon-Jin Lim (2)
    Minseok Kang (3)
    Minha Choi (4)

    1. Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
    2. Applied Meteorological Research Division, National Institute of Meteorological Research, Korean Meteorological Administration, 61 Yeouidaebang-ro, 16-gil, Dongjak-gu, Seoul, 63568, Korea
    3. National Center for AgroMeteorology, Bld. #36 (RM. #109), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
    4. Department of Water Resources, Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
  • 刊物主题:Atmospheric Sciences; Meteorology; Geophysics/Geodesy;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9533
  • 文摘
    Towards a better understanding of hydrological interactions between the land surface and atmosphere, land surface models are routinely used to simulate hydro-meteorological fluxes. However, there is a lack of observations available for model forcing, to estimate the hydro-meteorological fluxes in East Asia. In this study, Common Land Model (CLM) was used in offline-mode during the summer monsoon period of 2006 in East Asia, with different forcings from Asiaflux, Korea Land Data Assimilation System (KLDAS), and Global Land Data Assimilation System (GLDAS), at point and regional scales, separately. The CLM results were compared with observations from Asiaflux sites. The estimated net radiation showed good agreement, with r =0.99 for the point scale and 0.85 for the regional scale. The estimated sensible and latent heat fluxes using Asiaflux and KLDAS data indicated reasonable agreement, with r = 0.70. The estimated soil moisture and soil temperature showed similar patterns to observations, although the estimated water fluxes using KLDAS showed larger discrepancies than those of Asiaflux because of scale mismatch. The spatial distribution of hydro-meteorological fluxes according to KLDAS for East Asia were compared to the CLM results with GLDAS, and the GLDAS provided online. The spatial distributions of CLM with KLDAS were analogous to CLM with GLDAS, and the standalone GLDAS data. The results indicate that KLDAS is a good potential source of high spatial resolution forcing data. Therefore, the KLDAS is a promising alternative product, capable of compensating for the lack of observations and low resolution grid data for East Asia.

    © 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

    地址:北京市海淀区学院路29号 邮编:100083

    电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700