High Temperature Reaction of MCrAlY Coating Compositions with CaO Deposits
详细信息    查看全文
  • 作者:Thomas Gheno ; Gerald H. Meier ; Brian Gleeson
  • 关键词:MCrAlY alloys ; Multi ; layer scales ; Al2O3 growth kinetics ; CaO deposits
  • 刊名:Oxidation of Metals
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:84
  • 期:1-2
  • 页码:185-209
  • 全文大小:2,011 KB
  • 参考文献:1.G. W. Goward, Surface & Coatings Technology 108, 73 (1998).View Article
    2.J. R. Nicholls, JOM 52, 28 (2000).View Article
    3.A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, Progress in Materials Science 46, 505 (2001).View Article
    4.B. Gleeson, Journal of Propulsion and Power 22, 375 (2006).View Article
    5.A. G. Evans, D. R. Clarke and C. G. Levi, Journal of the European Ceramic Society 28, 1405 (2008).View Article
    6.D. R. Clarke, M. Oechsner and N. P. Padture, MRS Bulletin 37, 891 (2012).View Article
    7.R. Darolia, International Materials Reviews 58, 315 (2013).View Article
    8.J. L. Smialek, F. A. Archer and R. G. Garlick, JOM 46, 39 (1994).View Article
    9.M. P. Borom, C. A. Johnson and L. A. Peluso, Surface & Coatings Technology 86, 116 (1996).View Article
    10.C. Mercer, S. Faulhaber, A. G. Evans and R. Darolia, Acta Materialia 53, 1029 (2005).View Article
    11.S. Kramer, J. Yang, C. G. Levi and C. A. Johnson, Journal of the American Ceramic Society 89, 3167 (2006).View Article
    12.C. G. Levi, J. W. Hutchinson, M.-H. Vidal-Setif and C. A. Johnson, MRS Bulletin 37, 932 (2012).View Article
    13.Clean Coal Technology Topical Report Number 24, NETL (US Department of Energy, August 2006).
    14.V. Nagarajan, R. D. Smith and I. G. Wright, Oxidation of Metals 31, 325 (1989).View Article
    15.K. Jung, F. S. Pettit and G. H. Meier, Materials Science Forum 595-98, 805 (2008).View Article
    16.K. T. Chiang, G. H. Meier and R. A. Perkins, Journal of Materials for Energy Systems 6, 71 (1984).View Article
    17.W. Braue, Journal of Materials Science 44, 1664 (2009).View Article
    18.W. Braue and P. Mechnich, Journal of the American Ceramic Society 94, 4483 (2011).View Article
    19.I. G. Wright and T. B. Gibbons, International Journal of Hydrogen Energy 32, 3610 (2007).View Article
    20.S. Sridhar, P. Rozzelle, B. Morreale and D. Alman, Metallurgical and Materials Transactions A 42, 871 (2011).View Article
    21.B. Pint, JOM 65, 1024 (2013).View Article
    22.M. H. Sahraei, D. McCalden, R. Hughes and L. A. Ricardez-Sandoval, Fuel 137, 245 (2014).View Article
    23.Materials Preparation Center, Ames Laboratory USDOE, Ames IA, USA.
    24.C. A. Schneider, W. S. Rasband and K. W. Eliceiri, Nature Methods 9, 671 (2012).View Article
    25.V. K. Tolpygo and D. R. Clarke, Materials at High Temperatures 17, 59 (2000).View Article
    26.E. M. Levin, C. R. Robbins and H. F. McMurdie (eds.), Phase Diagrams for Ceramists, vol. I, (The American Ceramic Society, Columbus, 1964).
    27.A. Kaiser, B. Sommer and E. Woermann, Journal of the American Ceramic Society 75, 1463 (1992).View Article
    28.D. Monceau and B. Pieraggi, Oxidation of Metals 50, 477 (1998).View Article
    29.H. Hindam and D. P. Whittle, Oxidation of Metals 18, 245 (1982).View Article
    30.G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 275 (1989).View Article
    31.M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).View Article
    32.W. Weisweiler and S. J. Ahmed, Zement-Kalk-Gips 33, 84 (1980).
    33.M. A. Gülgün, O. O. Popoola and W. M. Kriven, Journal of the American Ceramic Society 77, 531 (1994).View Article
    34.B. M. Mohamed and J. H. Sharp, Journal of Materials Chemistry 7, 1595 (1997).View Article
    35.C. Ghoroi and A. K. Suresh, AIChE Journal 53, 502 (2007).View Article
    36.C. Wagner, Acta Metallurgica 17, 99 (1969).View Article
    37.G. J. Yurek, J. P. Hirth and R. A. Rapp, Oxidation of Metals 8, 265 (1974).View Article
    38.F. Gesmundo and F. Viani, Corrosion Science 18, 217 (1978).View Article
    39.F. Viani and F. Gesmundo, Corrosion Science 20, 541 (1980).View Article
    40.H. S. Hsu, Oxidation of Metals 26, 315 (1986).View Article
    41.G. Wang, B. Gleeson and D. L. Douglass, Oxidation of Metals 31, 415 (1989).View Article
    42.A. H. Heuer, D. B. Hovis, J. L. Smialek and B. Gleeson, Journal of the American Ceramic Society 94, S146 (2011).View Article
    43.J. Doychak, J. L. Smialek and T. E. Mitchell, Metallurgical Transactions A 20A, 499 (1989).View Article
    44.J. Jedlinski and G. Borchardt, Oxidation of Metals 36, 317 (1991).View Article
    45.B. A. Pint, J. R. Martin and L. W. Hobbs, Solid State Ionics 78, 99 (1995).View Article
    46.C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).View Article
    47.J. A. Nesbitt and R. W. Heckel, Metallurgical Transactions A 18A, 2075 (1987).View Article
    48.C. E. Campbell, W. J. Boettinger and U. R. Kattner, Acta Materialia 50, 775 (2002).View Article
    49.A. Andoh, S. Taniguchi and T. Shibata, Materials Science Forum 369-72, 303 (2001).View Article
    50.Zhuoqun Li, PhD dissertation, University of Pittsburgh (2014).
    51.F. Gesmundo and B. Gleeson, Oxidation of Metals 44, 211 (1995).View Article
    52.P. Carter, B. Gleeson and D. J. Young, Acta Materialia 44, 4033 (1996).View Article
    53.T. J. Nijdam and W. G. Sloof, Acta Materialia 56, 4972 (2008).View A
  • 作者单位:Thomas Gheno (1)
    Gerald H. Meier (1)
    Brian Gleeson (1)

    1. Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Inorganic Chemistry
    Tribology, Corrosion and Coatings
    Metallic Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-4889
文摘
The reactivity of β-NiAl?+?γ-Ni-based NiCoCrAlY alloys with and without CaO deposits was studied by means of isothermal exposures in air. Reaction with CaO at 1100?°C produced multi-layer scales of Al2O3 and calcium aluminates, and a mixture of liquid calcium chromate and nickel–cobalt oxide particles. Calcium chromate formation was a rapid, transient process, and the transition to a steady-state of slower Al2O3 growth was favored by increasing the alloy β fraction. The thermally-growing Al2O3 reacted with the deposit to form calcium aluminates in a solid-state diffusion process, which led to an increased oxidation rate. The analysis of Al2O3 growth kinetics in the production-destruction regime was used to account for the increased flux of aluminum entering the multi-layer scale. The effect of temperature on the ability to kinetically sustain an Al2O3 scale was then evaluated on the basis of Wagner’s criterion. Predicted results were consistent with the experimentally observed absence of passivation at 900?°C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700