Glutathione S-transferase Mu 2-transduced mesenchymal stem cells ameliorated anti-glomerular basement membrane antibody-induced glomerulonephritis by inhibiting oxidation and inflammation
详细信息    查看全文
  • 作者:Yajuan Li (1) (2)
    Mei Yan (1)
    Jichen Yang (3)
    Indu Raman (1)
    Yong Du (4)
    Soyoun Min (1)
    Xiangdong Fang (2)
    Chandra Mohan (1) (4)
    Quan-Zhen Li (1) (5)
  • 刊名:Stem Cell Research & Therapy
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:5
  • 期:1
  • 全文大小:961 KB
  • 参考文献:1. Kambham N: Crescentic Glomerulonephritis: an update on Pauci-immune and Anti-GBM diseases. / Adv Anat Pathol 2012, 19:111-24. CrossRef
    2. Borza DB, Neilson EG, Hudson BG: Pathogenesis of Goodpasture syndrome: a molecular perspective. / Semin Nephrol 2003, 23:522-31. CrossRef
    3. Suzuki Y, Shirato I, Okumura K, Ravetch JV, Takai T, Tomino Y, Ra C: Distinct contribution of Fc receptors and angiotensin II-dependent pathways in anti-GBM glomerulonephritis. / Kidney Int 1998, 54:1166-174. CrossRef
    4. Little MA, Pusey CD: Rapidly progressive glomerulonephritis: current and evolving treatment strategies. / J Nephrol 2004, 17:S10-S19.
    5. Feng L, Xia Y, Seiffert D, Wilson CB: Oxidative stress-inducible protein tyrosine phosphatase in glomerulonephritis. / Kidney Int 1995, 48:1920-928. CrossRef
    6. Kanaguchi Y, Suzuki Y, Osaki K, Sugaya T, Horikoshi S, Tomino Y: Protective effects of L-type fatty acid-binding protein (L-FABP) in proximal tubular cells against glomerular injury in anti-GBM antibody-mediated glomerulonephritis. / Nephrol Dial Transplant 2011, 26:3465-473. CrossRef
    7. Ferguson MA, Vaidya VS, Waikar SS, Collings FB, Sunderland KE, Gioules CJ, Bonventre JV: Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury. / Kidney Int 2010, 77:708-14. CrossRef
    8. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J: Free radicals and antioxidants in normal physiological functions and human disease. / Int J Biochem Cell Biol 2007, 39:44-4. CrossRef
    9. Rehan A, Johnson KJ, Wiggins RC, Kunkel RG, Ward PA: Evidence for the role of oxygen radicals in acute nephrotoxic nephritis. / Lab Invest 1984, 51:396-03.
    10. Shah SV, Baliga R, Rajapurkar M, Fonseca VA: Oxidants in chronic kidney disease. / J Am Soc Nephrol 2007, 18:16-8. CrossRef
    11. Xie C, Liu K, Fu Y, Qin X, Jonnala G, Wang T, Wang HW, Maldonado M, Zhou XJ, Mohan C: RANTES deficiency attenuates autoantibody-induced glomerulonephritis. / J Clin Immunol 2011, 31:128-35. CrossRef
    12. Xie C, Sharma R, Wang H, Zhou XJ, Mohan C: Strain distribution pattern of susceptibility to immune-mediated nephritis. / J Immunol 2004, 172:5047-055.
    13. Zhou SG, Wang P, Pi RB, Gao J, Fu JJ, Fang J, Qin J, Zhang HJ, Li RF, Chen SR, Tang FT, Liu PQ: Reduced expression of GSTM2 and increased oxidative stress in spontaneously hypertensive rat. / Mol Cell Biochem 2008, 309:99-07. CrossRef
    14. Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, Watson AD, Lusis AJ: Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. / Circulation 1995, 91:2488-496. CrossRef
    15. Hayek T, Stephens JW, Hubbart CS, Acharya J, Caslake MJ, Hawe E, Miller GJ, Hurel SJ, Humphries SE: A common variant in the glutathione S transferase gene is associated with elevated markers of inflammation and lipid peroxidation in subjects with diabetes mellitus. / Atherosclerosis 2006, 184:404-12. CrossRef
    16. Strange RC, Jones PW, Fryer AA: Glutathione S-transferase: genetics and role in toxicology. / Toxicol Lett 2000, 112-13:357-63. CrossRef
    17. Liu K, Li QZ, Delgado-Vega AM, Abelson AK, Sanchez E, Kelly JA, Li L, Liu Y, Zhou J, Yan M, Ye Q, Liu S, Xie C, Zhou XJ, Chung SA, Pons-Estel B, Witte T, de Ramon E, Bae SC, Barizzone N, Sebastiani GD, Merrill JT, Gregersen PK, Gilkeson GG, Kimberly RP, Vyse TJ, Kim I, D'Alfonso S, Martin J, Harley JB, / et al.: Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans. / J Clin Invest 2009, 119:911-23. CrossRef
    18. Li QZ, Zhou J, Yang R, Yan M, Ye Q, Liu K, Liu S, Shao X, Li L, Zhou XJ, Wakeland EK, Mohan C: The lupus-susceptibility gene kallikrein downmodulates antibody-mediated glomerulonephritis. / Genes Immun 2009, 10:503-08. CrossRef
    19. Lu H, Zhen J, Wu T, Peng A, Ye T, Wang T, Yu X, Vaziri ND, Mohan C, Zhou XJ: Superoxide dismutase mimetic drug tempol aggravates anti-GBM antibody-induced glomerulonephritis in mice. / Am J Physiol Renal Physiol 2010, 299:F445-F452. CrossRef
    20. Zhou XJ, Laszik Z, Wang XQ, Silva FG, Vaziri ND: Association of renal injury with increased oxygen free radical activity and altered nitric oxide metabolism in chronic experimental hemosiderosis. / Lab Invest 2000, 80:1905-914. CrossRef
    21. Paust HJ, Turner JE, Riedel JH, Disteldorf E, Peters A, Schmidt T, Krebs C, Velden J, Mittrucker HW, Steinmetz OM, Stahl RA, Panzer U: Chemokines play a critical role in the cross-regulation of Th1 and Th17 immune responses in murine crescentic glomerulonephritis. / Kidney Int 2012, 82:72-3. CrossRef
    22. Sheryanna A, Bhangal G, McDaid J, Smith J, Manning A, Foxwell BM, Feldmann M, Cook HT, Pusey CD, Tam FW: Inhibition of p38 mitogen-activated protein kinase is effective in the treatment of experimental crescentic glomerulonephritis and suppresses monocyte chemoattractant protein-1 but not IL-1beta or IL-6. / J Am Soc Nephrol 2007, 18:1167-179. CrossRef
    23. de Zubiria Salgado A, Herrera-Diaz C: Lupus nephritis: an overview of recent findings. / Autoimmune Dis 2012, 2012:849684.
    24. Schmitt N, Morita R, Bourdery L, Bentebibel SE, Zurawski SM, Banchereau J, Ueno H: Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12. / Immunity 2009, 31:158-69. CrossRef
    25. Calvani N, Tucci M, Richards HB, Tartaglia P, Silvestris F: Th1 cytokines in the pathogenesis of lupus nephritis: the role of IL-18. / Autoimmun Rev 2005, 4:542-48. CrossRef
    26. Shah D, Wanchu A, Bhatnagar A: Interaction between oxidative stress and chemokines: possible pathogenic role in systemic lupus erythematosus and rheumatoid arthritis. / Immunobiology 2011, 216:1010-017. CrossRef
    27. Kurien BT, Scofield RH: Autoimmunity and oxidatively modified autoantigens. / Autoimmun Rev 2008, 7:567-73. CrossRef
    28. Vaziri ND: Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. / Curr Opin Nephrol Hypertens 2004, 13:93-9. CrossRef
    29. Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, Himmelfarb J: Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. / Kidney Int 2004, 65:1009-016. CrossRef
    30. Shah SV: Oxidants and iron in chronic kidney disease. / Kidney Int Suppl 2004, 91:S50-S55. CrossRef
    31. Lange C, Togel F, Ittrich H, Clayton F, Nolte-Ernsting C, Zander AR, Westenfelder C: Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. / Kidney Int 2005, 68:1613-617. CrossRef
    32. Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C: Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. / Am J Physiol Renal Physiol 2005, 289:F31-F42. CrossRef
    33. Hagiwara M, Shen B, Chao L, Chao J: Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation. / Hum Gene Ther 2008, 19:807-19. CrossRef
    34. Vanella L, Kim DH, Asprinio D, Peterson SJ, Barbagallo I, Vanella A, Goldstein D, Ikehara S, Kappas A, Abraham NG: HO-1 expression increases mesenchymal stem cell-derived osteoblasts but decreases adipocyte lineage. / Bone 2010, 46:236-43. CrossRef
    35. Gao Y, Yao A, Zhang W, Lu S, Yu Y, Deng L, Yin A, Xia Y, Sun B, Wang X: Human mesenchymal stem cells overexpressing pigment epithelium-derived factor inhibit hepatocellular carcinoma in nude mice. / Oncogene 2010, 29:2784-794. CrossRef
    36. Li Y, Raman I, Du Y, Yan M, Min S, Yang J, Fang X, Li W, Lu J, Zhou XJ, Mohan C, Li QZ: Kallikrein transduced mesenchymal stem cells protect against anti-GBM disease and lupus nephritis by ameliorating inflammation and oxidative stress. / PLoS One 2013, 8:e67790. CrossRef
    37. Shao X, Yang R, Yan M, Li Y, Du Y, Raman I, Zhang B, Wakeland EK, Igarashi P, Mohan C, Li QZ: Inducible expression of kallikrein in renal tubular cells protects mice against spontaneous lupus nephritis. / Arthritis Rheum 2013, 65:780-91. CrossRef
    38. Njoku CJ, Patrick KS, Ruiz P Jr, Oates JC: Inducible nitric oxide synthase inhibitors reduce urinary markers of systemic oxidant stress in murine proliferative lupus nephritis. / J Investig Med 2005, 53:347-52. CrossRef
    39. Jones RL, Pepling ME: Role of the Anti-Apoptotic Proteins BCL2 and MCL1 in the Neonatal Mouse Ovary. / Biol Reprod 2013, 88:46. CrossRef
    40. Jin X, Wu XX, Jin C, Inui M, Sugimoto M, Kakehi Y: Delineation of apoptotic genes for synergistic apoptosis of lexatumumab and anthracyclines in human renal cell carcinoma cells by polymerase chain reaction array. / Anticancer Drugs 2012, 23:445-54. CrossRef
    41. Hansson LO, Bolton-Grob R, Massoud T, Mannervik B: Evolution of differential substrate specificities in Mu class glutathione transferases probed by DNA shuffling. / J Mol Biol 1999, 287:265-76. CrossRef
    42. Dusinska M, Staruchova M, Horska A, Smolkova B, Collins A, Bonassi S, Volkovova K: Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies. / Mutat Res 2012, 736:130-37. CrossRef
    43. Ortona E, Margutti P, Matarrese P, Franconi F, Malorni W: Redox state, cell death and autoimmune diseases: a gender perspective. / Autoimmun Rev 2008, 7:579-84. CrossRef
    44. Kokoszka JE, Coskun P, Esposito LA, Wallace DC: Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. / Proc Natl Acad Sci U S A 2001, 98:2278-283. CrossRef
    45. Miyamoto Y, Koh YH, Park YS, Fujiwara N, Sakiyama H, Misonou Y, Ookawara T, Suzuki K, Honke K, Taniguchi N: Oxidative stress caused by inactivation of glutathione peroxidase and adaptive responses. / Biol Chem 2003, 384:567-74. CrossRef
    46. Sharma R, Yang Y, Sharma A, Awasthi S, Awasthi YC: Antioxidant role of glutathione S-transferases: protection against oxidant toxicity and regulation of stress-mediated apoptosis. / Antioxid Redox Signal 2004, 6:289-00. CrossRef
    47. Nowling TK, Gilkeson GS: Mechanisms of tissue injury in lupus nephritis. / Arthritis Res Ther 2011, 13:250. CrossRef
    48. Hassan SZ, Gheita TA, Kenawy SA, Fahim AT, El-Sorougy IM, Abdou MS: Oxidative stress in systemic lupus erythematosus and rheumatoid arthritis patients: relationship to disease manifestations and activity. / Int J Rheum Dis 2011, 14:325-31. CrossRef
    49. Liang J, Zhang H, Hua B, Wang H, Lu L, Shi S, Hou Y, Zeng X, Gilkeson GS, Sun L: Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. / Ann Rheum Dis 2010, 69:1423-429.
    50. Chang JW, Hung SP, Wu HH, Wu WM, Yang AH, Tsai HL, Yang LY, Lee OK: Therapeutic effects of umbilical cord blood-derived mesenchymal stem cell transplantation in experimental lupus nephritis. / Cell Transplant 2011, 20:245-57. CrossRef
  • 作者单位:Yajuan Li (1) (2)
    Mei Yan (1)
    Jichen Yang (3)
    Indu Raman (1)
    Yong Du (4)
    Soyoun Min (1)
    Xiangdong Fang (2)
    Chandra Mohan (1) (4)
    Quan-Zhen Li (1) (5)

    1. Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8814, USA
    2. Laboratory of Disease Genomics and Individualized Medicine, Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
    3. Division of Biostatistics, Department of Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
    4. Biomedical Engineering Department, University of Houston, Houston, TX, 77204, USA
    5. Key Laboratory of Medical Genetics, Wenzhou Medical University School of Laboratory Medicine and Life Science, Wenzhou, 325035, China
  • ISSN:1757-6512
文摘
Introduction Oxidative stress is implicated in tissue inflammation, and plays an important role in the pathogenesis of immune-mediated nephritis. Using the anti-glomerular basement membrane antibody-induced glomerulonephritis (anti-GBM-GN) mouse model, we found that increased expression of glutathione S-transferase Mu 2 (GSTM2) was related to reduced renal damage caused by anti-GBM antibodies. Furthermore, mesenchymal stem cell (MSC)-based therapy has shed light on the treatment of immune-mediated kidney diseases. The aim of this study was to investigate if MSCs could be utilized as vehicles to deliver the GSTM2 gene product into the kidney and to evaluate its potential therapeutic effect on anti-GBM-GN. Methods The human GSTM2 gene (hGSTM2) was transduced into mouse bone marrow-derived MSCs via a lentivirus vector to create a stable cell line (hGSTM2-MSC). The cultured hGSTM2-MSCs were treated with 0.5mM H2O2, and apoptotic cells were measured by terminal dUTP nick-end labeling (TUNEL) assay. The 129/svj mice, which were challenged with anti-GBM antibodies, were injected with 106 hGSTM2-MSCs via the tail vein. Expression of hGSTM2 and inflammatory cytokines in the kidney was assayed by quantitative PCR and western blotting. Renal function of mice was evaluated by monitoring proteinuria and levels of blood urea nitrogen (BUN), and renal pathological changes were analyzed by histochemistry. Immunohistochemical analysis was performed to measure inflammatory cell infiltration and renal cell apoptosis. Results MSCs transduced with hGSTM2 exhibited similar growth and differentiation properties to MSCs. hGSTM2-MSCs persistently expressed hGSTM2 and resisted H2O2-induced apoptosis. Upon injection into 129/svj mice, hGSTM2-MSCs migrated to the kidney and expressed hGSTM2. The anti-GBM-GN mice treated with hGSTM2-MSCs exhibited reduced proteinuria and BUN (58% and 59% reduction, respectively) and ameliorated renal pathological damage, compared with control mice. Mice injected with hGSTM2-MSCs showed alleviated renal inflammatory cell infiltration and reduced expression of chemokine (C-C motif) ligand 2 (CCL2), interleukin (IL)-1β and IL-6 (53%, 46% and 52% reduction, respectively), compared with controls. Moreover, hGSTM2-MSCs increased expression of renal superoxide dismutase and catalase, which may associate with detoxifying reactive oxygen species to prevent oxidative renal damage. Conclusions Our data suggest that the enhanced protective effect of GSTM2-transduced MSCs against anti-GBM-GN might be associated with inhibition of oxidative stress-induced renal cell apoptosis and inflammation, through over-expression of hGSTM2 in mouse kidneys.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700