ToxB encodes a canonical GTP cyclohydrolase II in toxoflavin biosynthesis and ribA expression restored toxoflavin production in a ΔtoxB mutant
详细信息    查看全文
  • 作者:Minae Joo ; Hye-Gyeong Yoo ; Hyun-Ju Kim…
  • 关键词:Burkholderia glumae ; GTP cyclohydrolase II ; ribA ; toxB ; Toxoflavin
  • 刊名:Journal of the Korean Society for Applied Biological Chemistry
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:58
  • 期:6
  • 页码:877-885
  • 全文大小:1,005 KB
  • 参考文献:Blair LM, Sperry J (2013) Natural products containing a nitrogen-nitrogen bond. J Nat Prod 76:794-12CrossRef <br>Chen R, Barphagha IK, Karki HS, Ham JH (2012) Dissection of quorum-sensing genes in Burkholderia glumae reveals non-canonical regulation and the new regulatory gene tofM for toxoflavin production. PLoS ONE 7:e52150CrossRef <br>Choi G, Lee J, Ji JY, Woo J, Kang NS, Cho SY, Kim HR, Ha JD, Han SY (2013) Discovery of a potent small molecule SIRT1/2 inhibitor with anticancer effects. Int J Oncol 43:1205-211<br>DeShazer D, Waag DM, Fritz DL, Woods DE (2001) Identification of a Burkholderia mallei polysaccharide gene cluster by subtractive hybridization and demonstration that the encoded capsule is an essential virulence determinant. Microb Pathogen 30:253-69CrossRef <br>Fischer M, Bacher A (2005) Biosynthesis of flavocoenzymes. Nat Prod Rep 22:324-50CrossRef <br>Frelin O, Huang L, Hasnain G, Jeffryes JG, Ziemak MJ, Rocca JR, Wang B, Rice J, Roje S, Yurgel SN, Gregory JF 3rd, Edison AS, Henry CS, de Crécy-Lagard V, Hanson AD (2015) A directed-overflow and damage-control N-glycosidase in riboflavin biosynthesis. Biochem J 466:137-45CrossRef <br>Gr?wert T, Fischer M, Bacher A (2013) Structures and reaction mechanisms of GTP cyclohydrolases. IUBMB Life 65:310-22CrossRef <br>Grill S, Yamaguchi H, Wagner H, Zwahlen L, Kusch U, Mack M (2007) Identification and characterization of two Streptomyces davawensis riboflavin biosynthesis gene clusters. Arch Microbiol 188:377-87CrossRef <br>Kim J, Kim JG, Kang Y, Jang JY, Jog GJ, Lim JY, Kim S, Suga H, Nagamatsy T, Hwang I (2004) Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol Microbiol 54:921-34CrossRef <br>Kim J, Oh J, Choi O, Kang Y, Kim H, Goo E, Ma J, Nagamatsu T, Moon JS, Hwang I (2009) Biochemical evidence for ToxR and ToxJ binding to the tox operons of Burkholderia glumae and mutational analysis of ToxR. J Bacteriol 191:4870-878CrossRef <br>Kim MS, Kim H, Moon JS, Hwang I, Joung H, Jeon JH (2012) Toxoflavin lyase enzyme as a marker for selecting potato plant transformants. Biosci Biotechnol Biochem 76:2354-356CrossRef <br>Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175-76CrossRef <br>Levenberg B, Kaczmarek DK (1966) Enzymic release of carbon atom 8 from guanosine triphosphate, an early reaction in the conversion of purines to pteridines. Biochim Biophys Acta 117:272-75CrossRef <br>Levenberg B, Linton SN (1966) On the biosynthesis of toxoflavin, an azapteridine antibiotic produced by Pseudomonas cocovenenans. J Biol Chem 241:846-52<br>Machlowitz RA, Fisher WP, McKay BS, Tytell AA, Charney J (1954) Xanthothricin, a new antibiotic. Antibiot Chemother 4:259-61<br>Magalh?es ML, Argyrou A, Cahill SM, Blanchard JS (2008) Kinetic and mechanistic analysis of the Escherichia coli ribD-encoded bifunctional deaminase-reductase involved in riboflavin biosynthesis. Biochemistry 47:6499-507CrossRef <br>Miller WG, Leveau JH, Lindow SE (2000) Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol Plant Microbe Interact 13:1243-250CrossRef <br>Nagamatsu T, Yamasaki H (2001) General syntheses of 1-alkyltoxoflavin and 8-alkylfervenulin derivatives of biological significance by the regioselective alkylation of reumycin derivatives and the rates of transalkylation from 1-alkyltoxoflavins into nucleophiles. J Chem Soc Perkin Trans 1(2):130-37CrossRef <br>Philmus B, Shaffer B, Kidarsa T, Yan Q, Raaijmakers J, Begley T, Loper J (2015) Investigations into the biosynthesis, regulation and self-resistance of toxoflavin in Pseudomonas protegens Pf-5. ChemBioChem 16:1782-790CrossRef <br>Ren J, Kotaka M, Lockyer M, Lamb HK, Hawkins AR, Stammers DK (2005) GTP cyclohydrolase II structure and mechanism. J Biol Chem 280:36912-6919CrossRef <br>Ritz H, Schramek N, Bracher A, Herz S, Eisenreich W, Richter G, Bacher A (2001) Biosynthesis of riboflavin: studies on the mechanism of GTP cyclohydrolase II. J Biol Chem 276:22273-2277CrossRef <br>Sato Z, Koiso Y, Iwasaki S, Matsuda L, Shirata A (1989) Toxins produced by Pseudomonas glumae. Ann Phytopathol Soc Jpn 55:353-56CrossRef <br>Schramek N, Bracher A, Bacher A (2001) Biosynthesis of riboflavin. Single turnover kinetic analysis of GTP cyclohydrolase II. J Biol Chem 276:44157-4162CrossRef <br>Simon R, Prifer U, Puhler A (1983) A broad range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784-91CrossRef <br>Spoonamore JE, Dahlgran AL, Jacobsen NE, Bandarian V (2006) Evolution of new function in the GTP cyclohydrolase II proteins of Streptomyces coelicolor. Biochemistry 45:12144-2155CrossRef <br>Stirnimann CU, Petsalaki E, Russell RB, Müller CW (2010) WD40 proteins propel cellular networks.
  • 作者单位:Minae Joo (1) <br> Hye-Gyeong Yoo (1) <br> Hyun-Ju Kim (1) <br> Hyung-Jin Kwon (1) <br><br>1. Division of Bioscience and Bioinformatics, Myongji University, Yongin, 449-728, Republic of Korea <br>
  • 刊物主题:Applied Microbiology; Bioorganic Chemistry; Biological Techniques;
  • 出版者:Springer Netherlands
  • ISSN:2234-344X
文摘
Burkholderia glumae synthesizes toxoflavin, a phytotoxin that contributes the virulence of this phytopathogen. The toxoflavin biosynthetic gene cluster contains a tox operon composed of five genes, toxABCDE, and toxB is predicted to encode a GTP cyclohydrolase II, which is the first enzyme (RibA) in riboflavin biosynthesis. ToxE is also homologous to RibD, the bifunctional deaminase/reductase acting on the RibA product. This suggests that toxoflavin and riboflavin biosynthesis share the first two steps in their respective biosyntheses. In this study, we demonstrated that ToxB and B. glumae RibA (Bglu-RibA) both displayed GTP cyclohydrolase II activity with comparable kinetic parameters. When toxB was inactivated, toxoflavin production was abolished, and introduction of a plasmid copy of Bglu-ribA restored toxoflavin production in a ΔtoxB mutant. ToxB and Bglu-RibA can thus be defined as GTP cyclohydrolase II isozymes, even though Bglu-ribA is not a genetic equivalent of toxB because the chromosomal copy of Bglu-ribA is unable to support toxoflavin production in the absence of toxB. In LB agar culture, toxAB is incapable of complementing ΔtoxB though toxABC induced toxoflavin accumulation in the ΔtoxB mutant up to 80 % of the WT level. This indicates that toxBC co-expression is a critical factor for toxoflavin biosynthesis in this condition, suggesting that the WD repeat protein ToxC acts as a scaffolding protein in a toxoflavin biosynthetic metabolon. In LB liquid culture, toxAB successfully restored toxoflavin production, suggesting that a role of toxBC co-expression is dependent upon growth condition. Keywords Burkholderia glumae GTP cyclohydrolase II ribA toxB Toxoflavin

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700