Impaired glycocalyx barrier properties contribute to enhanced intimal low-density lipoprotein accumulation at the carotid artery bifurcation in mice
详细信息    查看全文
  • 作者:Bernard M. van den Berg (1)
    Jos A. E. Spaan (3)
    Hans Vink (1) (2)
  • 关键词:Carotid artery bifurcation ; Glycocalyx ; Heparan sulfate ; Hyaluronan ; Permeability
  • 刊名:Pfl眉gers Archiv - European Journal of Physiology
  • 出版年:2009
  • 出版时间:April 2009
  • 年:2009
  • 卷:457
  • 期:6
  • 页码:1199-1206
  • 全文大小:307KB
  • 参考文献:1. Barkefors I, Aidun CK, Egertsdotter EMU (2007) Effect of fluid shear stress on endocytosis of heparan sulfate and low-density lipoproteins. J Biomed Biotechnol 2007:8
    2. Berceli SA, Warty VS, Sheppeck RA, Mandarino WA, Tanksale SK, Borovetz HS (1990) Hemodynamics and low density lipoprotein metabolism. Rates of low density lipoprotein incorporation and degradation along medial and lateral walls of the rabbit aorto-iliac bifurcation. Arteriosclerosis 10:686-94
    3. Constantinescu AA, Vink H, Spaan JA (2001) Elevated capillary tube hematocrit reflects degradation of endothelial cell glycocalyx by oxidized LDL. Am J Physiol 280:H1051–H1057
    4. Constantinescu AA, Vink H, Spaan JA (2003) Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 23:1541-547 CrossRef
    5. David G, Bai XM, Van der Schueren B, Cassiman JJ, Van den Berghe H (1992) Developmental changes in heparan sulfate expression: in situ detection with mAbs. J Cell Biol 119:961-75 CrossRef
    6. Davies PF, Dewey CF, Bussolari SR, Gordon EJ, Gimbrone MA (1984) Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J Clin Invest 73:1121-129 CrossRef
    7. Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93:e136–e142 CrossRef
    8. Fry DL (2002) Arterial intimal-medial permeability and coevolving structural responses to defined shear-stress exposures. Am J Physiol 283:H2341–H2355
    9. Gorog P, Born GV (1983) Uneven distribution of sialic acids on the luminal surface of aortic endothelium. Br J Exp Pathol 64:418-24
    10. Gouverneur M, Spaan JA, Pannekoek H, Fontijn RD, Vink H (2006) Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am J Physiol 290:H458–H452
    11. Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulsky MI (2000) The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci USA 97:9052-057 CrossRef
    12. Haldenby KA, Chappell DC, Winlove CP, Parker KH, Firth JA (1994) Focal and regional variations in the composition of the glycocalyx of large vessel endothelium. J Vasc Res 31:2-
    13. Hem A, Smith AJ, Solberg P (1998) Saphenous vein puncture for blood sampling of the mouse, rat, hamster, gerbil, guinea pig, ferret and mink. Lab Anim 32:364-68 CrossRef
    14. Henry CB, Duling BR (1999) Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol 277:H508–H514
    15. Jawien J, Nastalek P, Korbut R (2004) Mouse models of experimental atherosclerosis. J Physiol Pharmacol 55:503-17
    16. Jo H, Dull RO, Hollis TM, Tarbell JM (1991) Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am J Physiol 260:H1992–H1996
    17. Liepsch D (2002) An introduction to biofluid mechanics—basic models and applications. J Biomech 35:415-35 CrossRef
    18. Massberg S, Brand K, Gruner S, Page S, Muller E, Muller I, Bergmeier W, Richter T, Lorenz M, Konrad I, Nieswandt B, Gawaz M (2002) A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 196:887-96 CrossRef
    19. Megens RT, Reitsma S, Schiffers PH, Hilgers RH, De Mey JG, Slaaf DW, oude Egbrink MG, van Zandvoort MA (2007) Two-photon microscopy of vital murine elastic and muscular arteries. Combined structural and functional imaging with subcellular resolution. J Vasc Res 44:87-8 CrossRef
    20. Mochizuki S, Vink H, Hiramatsu O, Kajita T, Shigeto F, Spaan JA, Kajiya F (2003) Role of hyaluronic acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release. Am J Physiol 285:H722–H726
    21. Mulivor AW, Lipowsky HH (2004) Inflammation- and ischemia-induced shedding of venular glycocalyx. Am J Physiol 286:H1672–H1680
    22. Pahakis MY, Kosky JR, Dull RO, Tarbell JM (2007) The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun 355:228-33 CrossRef
    23. Passerini AG, Polacek DC, Shi C, Francesco NM, Manduchi E, Grant GR, Pritchard WF, Powell S, Chang GY, Stoeckert CJ, Davies PF (2004) Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci USA 101:2482-487 CrossRef
    24. Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440:653-66 CrossRef
    25. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, Oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345-59 CrossRef
    26. Rutledge JC, Woo MM, Rezai AA, Curtiss LK, Goldberg IJ (1997) Lipoprotein lipase increases lipoprotein binding to the artery wall and increases endothelial layer permeability by formation of lipolysis products. Circ Res 80:819-28
    27. Schwenke DC, Carew TE (1989) Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 9:908-18
    28. Ueda A, Shimomura M, Ikeda M, Yamaguchi R, Tanishita K (2004) Effect of glycocalyx on shear-dependent albumin uptake in endothelial cells. Am J Physiol 287:H2287–H2294
    29. van den Berg BM, Spaan JA, Rolf TM, Vink H (2006) Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am J Physiol 290:H915–H920
    30. van den Berg BM, Vink H, Spaan JA (2003) The endothelial glycocalyx protects against myocardial edema. Circ Res 92:592-94 CrossRef
    31. van Haaren PM, VanBavel E, Vink H, Spaan JA (2003) Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy. Am J Physiol 285:H2848–H2856
    32. van Vlijmen BJ, van den Maagdenberg AM, Gijbels MJ, van der Boom H, HogenEsch H, Frants RR, Hofker MH, Havekes LM (1994) Diet-induced hyperlipoproteinemia and atherosclerosis in apolipoprotein E3-Leiden transgenic mice. J Clin Invest 93:1403-410 CrossRef
    33. Vink H, Constantinescu AA, Spaan JA (2000) Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation 101:1500-502
    34. Vink H, Duling BR (1996) Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 79:581-89
    35. Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC (2003) Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci USA 100:7988-995 CrossRef
  • 作者单位:Bernard M. van den Berg (1)
    Jos A. E. Spaan (3)
    Hans Vink (1) (2)

    1. Department of Physiology, CARIM, Maastricht University, Universiteitssingel 50, 6229 ER, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
    3. Department of Medical Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
    2. Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
  • ISSN:1432-2013
文摘
The glycocalyx contributes to the barrier properties of vascular endothelium, and recently, we reported using electron microscopy that glycocalyx is diminished at lesion prone sites in arterial bifurcations in mice. In the present study, we examined using confocal microscopy the dimension and composition of the endothelial glycocalyx at low- and high-risk atherogenic regions within the common carotid (common) and internal carotid branch (sinus) of C57BL/6J mice and compared dimensional variations with its ability to limit transendothelial leakage of low-density lipoprotein (LDL). Confocal laser scanning microscopy of arterial surfaces stained for heparan sulfate and hyaluronan revealed thinner glycocalyces at the sinus region (2.2?±-.7 and 2.3?±-.7?μm, respectively; P-lt;-.05) than the glycocalyx thickness at the common region (4.3?±-.6 and 4.3?±-.6?μm, respectively). This thinner glycocalyx was associated with impaired LDL retention by the glycocalyx resulting in a two to three times increase in intimal accumulation of LDL 15?min after i.v. bolus administration: 10.8?±-.6 vs. 4.0?±-.9?×-0,000?a.u. (sinus vs. common, P-lt;-.05). These results indicate that impaired glycocalyx barrier properties may contribute to transendothelial leakage of atherogenic LDL at lesion prone arterial sites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700