Visualization of the glomerular endothelial glycocalyx by electron microscopy using cationic colloidal thorium dioxide
详细信息    查看全文
  • 作者:Jan Hegermann ; Heinrich Lünsdorf ; Matthias Ochs…
  • 关键词:Glomerular endothelial glycocalyx ; Thorium dioxide ; Transmission electron microscopy
  • 刊名:Histochemistry and Cell Biology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:145
  • 期:1
  • 页码:41-51
  • 全文大小:8,479 KB
  • 参考文献:Alphonsus CS, Rodseth RN (2014) The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia 69:777–784PubMed CrossRef
    Arkill KP, Neal CR, Mantell JM, Michel CC, Qvortrup K, Rostgaard J, Bates DO, Knupp C, Squire JM (2012) 3D reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography. Microcirculation 19:343–351PubMed CrossRef
    Arkill KP, Qvortrup K, Starborg T, Mantell JM, Knupp C, Michel CC, Harper SJ, Salmon AH, Squire JM, Bates DO, Neal CR (2014) Resolution of the three dimensional structure of components of the glomerular filtration barrier. BMC Nephrol 15:24PubMed PubMedCentral CrossRef
    Avasthi PS, Koshy V (1988) The anionic matrix at the rat glomerular endothelial surface. Anat Rec 220:258–266PubMed CrossRef
    Bennett MS (1963) Morphological aspects of extracellular polysaccharides. J Histochem Cytochem 11:14–23CrossRef
    Bolton GR, Deen WM, Daniels BS (1998) Assessment of the charge selectivity of glomerular basement membrane using Ficoll sulfate. Am J Physiol 274:889–896
    Casper J (1967) The introduction in 1928–29 of thorium dioxide in diagnostic radiology. Ann NY Acad Sci. 145:527–529PubMed CrossRef
    Curran RC, Clark AE, Lovell D (1965) Acid mucopolysaccharides in electron microscopy. The use of the colloidal iron method. J Anat 99:427–434PubMed PubMedCentral
    Dane MJ, van den Berg BM, Lee DH, Boels MG, Tiemeier GL, Avramut MC, van Zonneveld AJ, van der Vlag J, Vink H, Rabelink TJ (2015) A microscopic view on the renal endothelial glycocalyx. Am J Physiol Renal Physiol. 308:F956–F966PubMed CrossRef
    Ebong EE, Macaluso FP, Spray DC, Tarbell JM (2011) Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler Thromb Vasc Biol 31:1908–1915PubMed PubMedCentral CrossRef
    Groot CG (1981) Positive colloidal thorium dioxide as an electron microscopical contrasting agent for glycosaminoglycans, compared with ruthenium red and positive colloidal iron. Histochemistry 71:617–627PubMed CrossRef
    Haraldsson B, Nyström J (2012) The glomerular endothelium: new insights on function and structure. Curr Opin Nephrol Hypertens 21:258–263PubMed CrossRef
    Haraldsson B, Nyström J, Deen WM (2008) Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev 88:451–487PubMed CrossRef
    Hjalmarsson C, Johansson BR, Haraldsson B (2004) Electron microscopic evaluation of the endothelial surface layer of glomerular capillaries. Microvasc Res 67:9–17PubMed CrossRef
    Jacob M, Bruegger D, Rehm M, Stoeckelhuber M, Welsch U, Conzen P, Becker BF (2007) The endothelial glycocalyx affords compatibility of Starling’s principle and high cardiac interstitial albumin levels. Cardiovasc Res 73:575–586PubMed CrossRef
    Lipowsky HH (2005) Microvascular rheology and hemodynamics. Microcirculation 12:5–15PubMed CrossRef
    Lünsdorf H, Kristen I, Barth E (2006) Cationic hydrous thorium dioxide colloids—a useful tool for staining negatively charged surface matrices of bacteria for use in energy-filtered transmission electron microscopy. BMC Microbiol 6:59PubMed PubMedCentral CrossRef
    Müller A (1906) Bemerkungen über das Hydrosol des Thoriumoxydhydrats. Ber Dtsch Chem Ges 93:2857–2859CrossRef
    Nieuwdorp M, Meuwese MC, Mooij HL, Ince C, Broekhuizen LN, Kastelein JJ, Stroes ES, Vink H (2008) Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. J Appl Physiol 104:845–852PubMed CrossRef
    Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440:653–666PubMed CrossRef
    Rambourg A, Leblond CP (1967) Electron microscope observations on the carbohydrate-rich cell coat present at the surface of cells in the rat. J Cell Biol 32:27–53PubMed PubMedCentral CrossRef
    Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, Oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–359PubMed PubMedCentral CrossRef
    Rostgaard J, Qvortrup K (1997) Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae. Microvasc Res 53:1–13PubMed CrossRef
    Squire JM, Chew M, Nneji G, Neal C, Barry J, Michel C (2001) Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J Struct Biol 136:239–255PubMed CrossRef
    Vink H, Duling BR (1996) Identification of distinct luminal domains for macromolecules, erythrocytes, and leucocytes within mammalian capillaries. Circ Res 79:581–589PubMed CrossRef
    Vink H, Duling BR (2000) Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am J Physiol Heart Circ Physiol 278:H285–H289PubMed
    Wegener K, Zahnert R (1970) Bericht über pathologisch-anatomische und autoradiographische Untersuchungen an 9 Fällen menschlicher Thorotrastose. Virchows Arch A Pathol Pathol Anat. 351:316–332PubMed CrossRef
    Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167PubMed CrossRef
  • 作者单位:Jan Hegermann (1) (2) (3)
    Heinrich Lünsdorf (4)
    Matthias Ochs (1) (2) (3)
    Hermann Haller (5)

    1. Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
    2. Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hanover, Germany
    3. REBIRTH Cluster of Excellence, Hanover, Germany
    4. ZEIM, Helmholtz Center for Infection Research, Braunschweig, Germany
    5. Department of Nephrology, Hannover Medical School, Hanover, Germany
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Anatomy
    Medicine/Public Health, general
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-119X
文摘
Biological material itself appears with poor contrast in electron microscopy (EM), due to its composition mostly of light elements. Classical staining agents such as osmium tetroxide, uranyl acetate, and lead citrate preserve and/or stain cellular structures such as membranes, cytoplasm, and organelles well for EM. However, extracellular polymeric substances (EPS) show no or only poor contrast with these staining agents. The endothelial glycocalyx in blood vessels consists mainly of proteoglycans. It can be visualized by EM only by additional staining with heavy metal ions such as copper (Alcian blue, cupromeronic blue), ruthenium (ruthenium red), or lanthanum. Best results are achieved by combined perfusion of fixative and stain. Cationic hydrous thorium dioxide colloids (named here cThO2) trace acidic groups in EPS. We describe here the use of cThO2 to visualize the glomerular endothelial glycocalyx in the mouse kidney. cThO2 shows high electron density and binds to a continuous layer of up to a few hundred nanometers thickness on the glomerular endothelium, as well as on epithelia in other blood vessels in perfused animals. The observed staining pattern gives rise to periodic densities, with a spacing varying between 50 and 200 nm, depending on the overall layer thickness, which varies between below 50 up to 300 nm. Due to high electron density of the used cThO2 particles, the introduced method allows distinct imaging and precise fine structural analysis of the endothelial glycocalyx.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700